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A 30-year dataset of CO2 in flowing 
freshwaters in the United States
Timothy R. Toavs1, Caleb T. Hasler2, Cory D. Suski3 & Stephen R. Midway  1 ✉

Increasing atmospheric carbon dioxide (CO2) concentrations have been linked to effects in a wide range 
of ecosystems and organisms, with negative effects of elevated CO2 documented for marine organisms. 
Less is known about the dynamics of CO2 in freshwaters, but the potential exists for freshwater 
organisms to be challenged by elevated CO2. In flowing freshwaters CO2 exhibits more variability than 
in lakes or the ocean, yet spatiotemporally extensive direct measures of CO2 in freshwater are rare. 
However, CO2 can be estimated from pH, temperature, and alkalinity—commonly collected water 
quality metrics. We used data from the National Water Quality Monitoring Council along with the 
program PHREEQC to estimate CO2 in flowing freshwaters across 35,000 sites spanning the lower 48 
US states from 1990 through 2020. Site data for water chemistry measurements were spatially joined 
with the National Hydrology Dataset. Our resulting dataset, CDFLOW, presents an opportunity for 
researchers to add CO2 to their datasets for further investigation.

Background & Summary
Climate change caused by anthropogenically produced carbon dioxide (CO2) is an issue that poses challenges 
around the world, including within marine and freshwater ecosystems. CO2 concentrations in the atmosphere 
have been steadily increasing since the mid-nineteenth century with a total increase of around 40%1 in that time. 
While CO2 concentrations in the atmosphere have fluctuated throughout time, the rate of increase recorded 
since the 1850s is greater than any rate of increase that has occurred in the last million years2. As CO2 in the 
atmosphere rises, dissolution of CO2 into the ocean increases, thus interacting with the ocean carbonate system 
and ultimately leading to a decrease in ocean pH and a decrease in surface calcium carbonate (CaCO3) con-
centrations, a process known as ocean acidification3. Dissolved CO2 in marine and freshwater environments 
is measured as the partial pressure of CO2 (pCO2)4. This rise in pCO2 has been shown to affect a wide range 
of ecosystems and organisms, with negative effects of elevated pCO2 documented for marine and freshwater 
organisms. More specifically, ocean acidification caused by increasing atmospheric CO2 has been shown to alter 
fish behaviour and physiology5 and affect planktonic primary producers6,7. Outcomes of the effects are difficult 
to predict due to the variability across taxa. However, possible outcomes include reduced fish populations5,8 and 
declines in ocean primary productivity9. While the effects of elevated pCO2 in marine environments are well 
documented, less is known about the dynamics of pCO2 in freshwaters, but the potential exists for freshwater 
organisms to be challenged10.

While less is known about pCO2 dynamics in freshwater, some general characteristics and processes have 
been documented. Flowing freshwaters have many different potential sources of pCO2 and show high variability 
from one water body to another. Cole et al.11 showed that pCO2 in North American lakes was rarely at equilib-
rium with CO2 in the atmosphere and found a range of concentration differences from 175 times lower pCO2 
than atmospheric CO2 to 57 times greater. Flowing freshwaters show more variability and are typically supersat-
urated compared to the atmosphere, and have even been identified as sources of atmospheric CO2

12
. Butman and 

Raymond13 verified supersaturation in US flowing freshwaters and found that there is a relationship between 
pCO2 and stream order suggesting a proportional relationship between stream size and pCO2. Typically, pCO2 in 
flowing freshwater is influenced by the water source of the flowing freshwater systems coupled with characteris-
tics of that system including surrounding geologic conditions, pCO2 residence time, and the gas transfer veloc-
ity14. Other contributing factors to pCO2 include (but are not limited to) the balance between photosynthetic and 
respiration rates15 and terrestrial respiration12. No matter the source, flowing freshwaters display high variability 
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in pCO2 and while not much is known about the potential impacts on freshwater organisms and ecosystems it is 
important to understand pCO2 spatiotemporal trends to identify potential impacts.

Considering the high variability displayed in flowing freshwaters a large spatiotemporal dataset is needed 
for understanding patterns and trends. Direct measures of pCO2 in flowing freshwaters are extremely lim-
ited making it challenging to define spatial or temporal pCO2 trends. However, pCO2 can be estimated from 
a combination of water quality metrics including pH, temperature, and alkalinity—commonly collected water 
quality metrics, and has been done numerous times throughout the literature13,16–18. Our dataset (referred to 
as CDFLOW)19 fills the need for a large spatiotemporal dataset using pH, temperature, and alkalinity meas-
urements from across the lower 48 United States (CONUS) from 1990 through 2020. To our knowledge, 
CDFLOW19 is the largest publicly available pCO2 database with over 750,000 pCO2 estimates coming from over 
35,000 sites. CDFLOW19 is also integrated with the National Hydrologic Dataset (NHD)20 allowing for the addi-
tion of other environmental and geospatial variables21 and ease when incorporating with other databases related 
to the NHD. CDFLOW19 provides an opportunity for spatiotemporal analysis of pCO2 across the CONUS and 
the possibility of adding pCO2 data to other researchers’ data.

Methods
Data query. Water quality measurements and their respective site-data (see below for site definition) were 
queried separately by each of the 48 CONUS states from the Water Quality Data Portal22 using the following 
filters:

•	 Country = “United States of America”
•	 Site Type = “Stream”
•	 Date Range from = “01-01-1990”
•	 Date Range to = “12-31-2020”
•	 Sample media = “Water”
•	 Characteristics = “Alkalinity, total”, “Alkalinity”, “pH”, and “Temperature, water”

The “Total alkalinity” and “Alkalinity” characteristic parameters are equivalent measurements but represent 
the different labels that respective reporting agencies use. The separate data queries for each state were merged 
using a shared variable called “MonitoringLocationIdentifier”. The data queries and subsequent data merges 
resulted in 48 water quality measurement datasets with matching site data, representing each state within the 
CONUS.

pCO2 estimation. The 48 datasets were processed and formatted separately then combined into one dataset 
for estimating pCO2. The first step was to subset the datasets for quality and consistency among measurements. 
The following filters were applied:

•	 Removing non-numeric measurement values; e.g., “alkalinity <1 mg/l”
•	 Removing measurement values represented as statistical summaries and not observations; e.g., “average 

temp = 21 °C”
•	 Removing measurements not taken at the surface of the respective waterbody.
•	 Removing extreme water temperature measurements e.g., temperature ≤0 °C and temperature ≥40 °C
•	 Removing impossible pH values e.g., pH >14
•	 Removing pH values below 5.4

Hunt et al23. found that when pH is under 5.4 there is an increased risk of overestimating pCO2 due to the 
possibility of non-carbonate anions contributing to the total pH, thus filtering out pH values less than 5.4. 
pH over 14 was excluded because the standard pH scale goes from 0–14. No filters were applied to alkalinity 
measurements.

Next, we grouped temperature, pH, and alkalinity measurements by location, date, and time. Grouping was 
done by creating a key identification by concatenating the following columns: “MonitoringLocationIdentifier”, 
“ActivityStartDate”, and “ActivityStartTime”. If time data were not available for water quality measurements, 
they were still included but were grouped with water quality measurements also without time data. In grouping 
water quality measurements this way, they are grouped by the highest time/date resolution available, with day 
being the coarsest acceptable resolution. CDFLOW19 requires all three of the queried water quality metrics to be 
present in each group to estimate pCO2.

Finally, if a group had records of temperature, pH, and alkalinity, a single pCO2 value was estimated using the 
United States Geological Survey’s program PHREEQC v324. PHREEQC quantitatively accounts for the chemical 
composition of a solution by relying on mole-balancing equations and in solving the mole-balance equations 
it derives the most likely pCO2 estimation25. It should be noted that PHREEQC calculates pCO2 under the 
assumption that alkalinity and pH in a system are determined by the current state of the carbonate system. 
PHREEQC can detect when this carbonate system assumption cannot be safely made in which case that group of 
observations was discarded. In cases where multiple measurements of a single water quality measurement were 
grouped with one or more of the two other required measurements, a measurement was chosen at random to be 
grouped for a pCO2 estimate. All measurements not grouped were then discarded. Also, we excluded extreme 
outliers in the pCO2 estimates which exceeded 2 standard deviations from the mean. The combination of the 
48 processed, formatted, and estimated datasets resulted in a single dataset representing all our pCO2 estimates 
across the CONUS.
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Defining sites. The site data that was merged with water quality measurements included latitude and lon-
gitude coordinates. These coordinates corresponded with the location identifier for each water quality measure-
ment, now a pCO2 estimate, and labeled as “MonitoringLocationIdentifier” (referred to as MID). We created 
a separate dataset using our dataset of pCO2 estimates across the CONUS created above, and this new dataset 
included each of the unique MIDs along with latitude and longitude coordinates. Using the dataset of unique 
MIDs, we spatially joined each unique MID with the Environmental Protection Agencies National Hydrological 
Dataset Plus V220,26 (NHD) based on the closest stream catchment feature within NHD. Stream catchment 
features were labeled with a unique code called a COMID27. The spatial join resulted in a dataset with each 
unique MID now being associated with a COMID and was merged with our dataset of pCO2 estimates across 
the CONUS. We also calculated the distance between MID’s and the associated COMID, when the distance was 
greater than 100 meters the associated pCO2 estimate(s) was excluded from our dataset of pCO2 estimates across 
the CONUS. Finally, we spatially joined MID coordinates with Hydrologic Unit (HUC12)28 polygons included in 
the NHD. The result of the two spatial joins is the ability to group pCO2 estimates at any Hydrologic Units Code 
level and now sites within CDFLOW19 are defined as what COMID the estimate resides.

All data queries, manipulations, and calculations were done using the statistical program R version 4.1.229.  
A visual representation of the workflow to create CDFLOW can be found in Fig. 1.

Data Records
CDFLOW19 exists as a single CSV file that has 779,186 pCO2 estimates (rows) and 10 variables (columns) across 
the CONUS from 1990 through 2020 (Table 1). All 48 states within the CONUS are represented across 35,855 
sites. CDFLOW19 and all supporting code needed to generate and validate the dataset can be downloaded from 
a public repository on Figshare (https://doi.org/10.6084/m9.figshare.19787326).

While CDFLOW19 has representation across all 48 states and 18 major watersheds within the CONUS, 
some areas are more represented than others. To display the spatial variability of CDFLOW we grouped esti-
mates by hydrological unit codes (HUC2) and mapped them (Fig. 2). The South Atlantic Gulf and Mid Atlantic 
Watersheds had the most representation in CDFLOW19 followed by the Missouri and Arkansas-White-Red 
watersheds. Also, we normalized the quantity of estimates within HUC2s by calculating the number of estimates 
per 5,000 km of stream distance within the HUC2. Total stream distance was calculated by taking the sum of 
COMID distances within the NHD for each HUC2. The normalized quantity of stream estimates followed sim-
ilar patterns to the total number of estimates (Fig. 2). Leading us to conclude that estimates are not proportional 
to quantity of water but other non-environmental factors. We also looked at the temporal scale of CDFLOW19 
(Fig. 3). Generally, estimates increased going from the 1990’s to the early 2000 were they remained constant 
then started to decrease from 2015 to 2020. Finally, we inspected spatiotemporal trends of estimates across the 
CONUS by splitting CDFLOW19 into three decades (1990–2000, 2001–2010, 2011–2020). We found that the 
same spatial trends as the total number of estimates in Fig. 2 held constant across the three decades.

Technical Validation
Data validation. pCO2 values in flowing freshwaters from the literature range widely with typical values 
falling between 1,300 to 4,300 micro atmospheres, but values in excess of 10,000 micro atmospheres have been 
reported30–33 (micro atmospheres being the unit of the partial pressure of CO2). CDFLOW estimates fall within 
the listed range with mean HUC2 values ranging from 1,200 to 4,500 micro atmospheres and a total interquartile 
range (25% to 75%) of 1,000 to 3,450 micro atmospheres. Also, CDFLOW does have values that reach in excess of 
10,000 micro atmospheres as reported above. Although we find that CDFLOW estimates compare adequately to 
what is found in the literature, the majority of pCO2 reported (including those cited here) come from estimated 
values using similar methods as CDFLOW. In a recent study, Liu et al.34 assembled a data set of direct meas-
urements of pCO2 from other published studies. Liu et al.34 calculated average pCO2 values in different global 
ecoregions at 1810, 1540, and 2560 micro atmospheres in the arctic, temperate, and tropics respectively, and again 
CDFLOW had similar averages.

Fig. 1 Workflow for developing CDFLOW19.
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We downloaded the dataset assembled by Liu et al.34 and compared it with CDFLOW. However, first, we did 
the same site join as done in CDFLOW to assign the direct measurements COMIDs and Hydrologic Unit Codes. 
We then filtered CDFLOW to the months that data from the direct measurements were from and the HUC8s 
data was located. Both datasets were then filtered so that each HUC8 had a minimum of 10 data points (in order 
to avoid comparing very low sample sizes). We then did a separate ANOVA comparing the data from CDFLOW 
and Liu et al.34 for each HUC8. This resulted in 26 within-HUC8 comparisons. Of those comparisons, less than 
half (46%) were significantly different (p < 0.05), suggesting that most of the time our estimates were distributed 
the same as those in Liu et al. (2022). We also inspected the direction of the bias between the estimates and direct 
measurements by finding the difference between the median pCO2 values in each HUC8. This result is akin to 
examining residuals from a linear model, in which we expect the differences to be centered on 0 and normally 
distributed. We found that the bias difference (i.e., residuals) between the medians was homoscedastic, which is 
strong evidence that neither our data or the Liu et al.34 data was over- or under-estimating pCO2.

Site ground truth. To test the accuracy of the site join procedure used to define sites in CDFLOW we 
created a procedure to ground truth the site join. The procedure worked by randomly choosing 50 CDFLOW 
sites and mapping the original latitude and longitude as well as the given COMID and all COMID stream fea-
tures within 0.025 degrees latitude and 0.025 degrees longitude of the original coordinates in 50 separate plots. 
The resulting 50 plots were then checked manually by 2 observers to demonstrate how often the unsupervised 
procedure led to a reliable result. Both observers independently found that 50/50 (100%) of the random sites 
were correctly assigned. The R-script for the analysis is available at the Figshare link (https://doi.org/10.6084/
m9.figshare.19787326).

Water quality data portal. The Water Quality Data Portal is a water quality data repository hosted by 
the United States Geological Survey22. Users can interface and download data via the Water Quality Data Portal 
website (https://www.waterqualitydata.us). The Water Quality Data Portal is a dynamic data repository with over 
290 million standardized records. A record being a single collected water quality metric. Contributing agencies 
include all water quality records reported to the United States Geological Survey, the United States Department of 
Agriculture, and the Environmental Protection Agency.

National hydrological dataset. The National Hydrological Dataset (NHD) is a national geospatial surface 
water framework hosted by the Environmental Protection Agency building in conjunction with the United States 
Geological Survey20,26. NHD includes shapefiles mapping all flowing water systems throughout the United States.

StreamCat. The StreamCat dataset is incorporated into the NHD, which maps stream segments and their 
associated catchment within the CONUS27.

PHREEQC. PHREEQC Version 3 is a computer program written in the C++ programming language that is 
designed to perform a wide variety of aqueous geochemical calculations24. PHREEQC quantitatively accounts 
for the chemical composition of a solution by relying on mole-balancing equations. It is free and available  
(e.g. https://www.usgs.gov/software/phreeqc-version-3).

Usage Notes
Estimation uncertainty. PHREEQC relies on the equilibrium of the carbonate system in water in order to 
estimate pCO2

25 and uncertainty has been documented for pCO2 estimates that rely on carbonate equilibrium. 
When error is present in pCO2 estimation using carbonate equilibria, overestimation is usually the error23,35,36. 
We applied filters to data that went into pCO2 estimation to mitigate overestimation (see methods). Further fil-
ters can be applied to data to further mitigate overestimation risks at the discretion of the user; e.g., removing 
pCO2 estimates greater than 100,000 parts per million volume, and removing alkalinity values below 1,000 micro 
equivalents per kilogram water36. While absolute values of CDFLOW19 pCO2 estimates may be subject to overes-
timation relative values and trends are still valid.

Column Names Date type Description Source

Comid Character Stream Catchment code where the pCO2 estimates exists, code is derived from the EPA 
StreamCat dataset within the NHD NHD

Date Character Date of temperate, pH and Alkalinity observations WQP

Time Character Time of temperate, pH and Alkalinity observations

HUC_12 Character 12-digit hydrological unit code NHD

State Character US state where data point was located, given in standard state abbreviation code WQP

Temp.C Numeric Temperature in units Celsius WQP

pH.std_units Numeric pH given in standard pH units WQP

Alkalinity.ueq/kgw Numeric total alkalinity in units - micro equivalence per kilogram water WQP

pCO2.uatm Numeric pCO2 given in units - micro atmospheres PHREEQC

CO2.mg/l Numeric Concentration of CO2 given in milligrams per liter PHREEQC

Table 1. Description of the data included in CDFLOW19. Variables are indicated under column names with the 
data type, a description, and the original source of that column.
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Uncertainty estimates from PHREEQC are available as mole balance percent errors. However, when only 
including three metrics to compute pCO2 this error term is always quite high but does not necessarily reflect 
a poor estimate. As discussed in Potter et al.37 which compares modeled pCO2 estimates using PHREEQC to 

Fig. 2 Spatial distribution of pCO2 estimates within CDFLOW19. Panel (a) shows the total number of estimates 
in each Hydrological unit code-2 (HUC2)28 within the CONUS. Panel (b) shows the total number of estimates 
divided by the number of 5000-feature-km in each HUC2 within the CONUS.

Fig. 3 Counts of pCO2 estimates by year within CDFLOW19.

https://doi.org/10.1038/s41597-022-01915-0
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direct measurements, they conclude that although mole change balance percent errors are high PHREEQC still 
provides a good estimate of pCO2 using pH, temperature, and alkalinity. So, we have decided to exclude mole 
change balance percent error from the dataset as they are not relevant for modeling purposes and do not negate 
the validity of CDFLOW pCO2 estimates.

Extra parameters. PHREEQC does allow for the inclusion of extra parameters when estimating pCO2, and 
more specifically the inclusion of other dissolved inorganic species. However, data on other dissolved inorganic 
species that matches the same date, time, and location of the pH, temperature, and alkalinity is only available to 
a limited number of observations. Due to the limited number of other dissolved inorganic species for observa-
tion they were excluded from the PHREEQC estimation. However, the use of other dissolved inorganic species 
in estimating pCO2 using PHREEQC would potentially allow for more robust estimates. If CDFLOW users are 
interested in the inclusion of other dissolved inorganic species a supporting script can be found at the Figshare 
link (https://doi.org/10.6084/m9.figshare.19787326) that describes and gives examples of the changes required 
to do so.

Expanding data. By defining sites in CDFLOW19 by which COMID they fall into gives each site all the data 
that corresponds to that COMID. COMID data can be accessed via the NHD (see technical validation). COMID 
data can also be accessed via R package NHD Tools38.

Code availability
Code for the creation of CDFLOW is available as a series of R scripts via public repository on Figshare19 (https://doi.org/ 
10.6084/m9.figshare.19787326).
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