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Abstract

An individual’s behavioral and physiological characteristics can have important impacts on fitness, including during interactions
with humans. For example, certain traits (metabolic rate, boldness, etc.) have been shown to impact angling vulnerability in fish
targeted by recreational anglers. While prior work has focused on boldness behavior and several metrics of metabolic perfor-
mance, the role of two critical traits, social behavior and swimming performance, have rarely been directly examined. To address
this gap, we conducted a study utilizing bluegill Lepomis macrochirus, a highly popular sportfish species found throughout much
of North America, to determine the relationship between social behavior, swimming performance, fish size, and angling vulner-
ability. One hundred and seven bluegill were assessed for social behavior in a laboratory setting, using scoring methods derived
from social network analysis. Bluegill were then assessed for swimming performance (critical swimming speed, U,,;;) before
being angled in a naturalistic pond setting over nine daily angling sessions. Following angling, a subset of fish were left
uncaptured (N = 28), were captured only once (N = 68), or were captured twice (N = 11). Both fish total length and swimming
performance were positively linked with vulnerability to initial capture, with fish length also being linked to vulnerability to
recapture. In addition to length, social behavior (higher sociability and lower aggression) was positively linked to vulnerability to
recapture. Collectively, these results indicate that the drivers of angling vulnerability shift as angled fish populations gain more
experience with lures, and that for bluegill, the most vulnerable individuals are likely to be larger and highly social.

Significance statement

Individuals within a species show several differences in their behavior and physiology. These differences may have major
consequences for fitness, especially in environments impacted by humans. One example of this is freshwater fish targeted by
recreational anglers, where individuals with certain behavioral or physiological traits might be more likely to be caught. In this
study, we assessed the social behavior, aggression, and swimming performance of bluegill Lepomis macrochirus before angling
them in a naturalistic pond setting. We found that larger size and higher swimming performance were linked to vulnerability to
initial capture, while length and higher sociability caused fish to be more vulnerable to being caught a second time. Collectively,
this means these traits may evolve as a result of selective harvest and also that the drivers of vulnerability may change after fish
gain experience with anglers.
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Introduction
Communicated by I. Hamilton Within populations, individuals often show consistent differ-
ences in behavioral characteristics. These sets of behavioral
>4 Michael J. Louison traits, often referred to as “behavioral syndromes” (Sih et al.
mjlouison @mckendree.edu 2004; Sih and Bell 2008; Wilson and Godin 2009), include
several primary axes, including boldness, exploratory tenden-
! Department of Natural Resources and Environmental Sciences, cy, activity, aggression, and sociability (Réale et al. 2007;
University of Illinois at Urbana-Champaign, Champaign, USA Conrad et al. 2011). For species that live in groups, the ag-
> Illinois Natural History Survey, Champaign, USA gression and sociability axes play a major part in defining the
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role of an individual within the group. For instance, highly
aggressive individuals may be likely to assume dominant po-
sitions within social groups (Winberg et al. 1991; Dugatkin
and Wilson 1992), while less aggressive individuals may be
forced into subordinate roles where access to resources may
be limited (@verli et al. 1999; Webster et al. 2009). Despite
their subordinate position, less-aggressive individuals may
benefit by avoiding energetically costly confrontations with
other individuals (Houston and McNamara 1988; Seebacher
et al. 2013) or by more easily associating with other individ-
uals and gaining the advantages of group membership (Croft
et al. 2003; Ost et al. 2015). The relative advantage of any of
these social approaches is expected to vary depending on en-
vironmental context, including abiotic conditions, population
density, predator abundance, and food availability
(Dingemanse and Wolf 2010; Sih et al. 2015).

In many cases, interindividual differences in behavior are
associated with interindividual differences in physiology as
well (Koolhaas et al. 1999). These correlations are often due
to tradeoffs between physiology and fitness; for instance, in-
dividuals with high metabolic rates tend to be bolder while
foraging because they consume energy more quickly and,
thus, must forage more actively in order to acquire the food
to fuel those metabolic needs (Stamps 2007). Indeed, boldness
has often been found to be positively linked with metabolic
rate (Careau et al. 2008; Killen et al. 2012; Binder et al. 2016)
as well as low glucocorticoid responsiveness to stress
(Koolhaas et al. 1999; Archard et al. 2012). In addition to
boldness, metabolic characteristics such as aerobic scope
and standard metabolic rate have also been positively corre-
lated to aggression and dominance (Metcalfe et al. 1995;
Killen et al. 2014). For fish, this correlation may be due to
the greater swimming performance of fish with higher meta-
bolic rates, which leads to these individuals taking leadership
positions within shoals or schools that are preserved through
aggressive behavior (Killen et al. 2017; Seebacher and Krause
2017). As a result, a selective pressure that targets a particular
physiological trait (such as swimming performance) would
also impact the behavioral traits correlated with it, and vice
versa (Dochtermann and Roff 2010; Wolf and Weissing
2012).

One circumstance in which individual survival and fitness
are linked with behavior and physiology can be found in fish
that are targeted by recreational or commercial fishing. It is
well documented that behavioral and physiological traits
(such as boldness or metabolism) can be drivers of vulnera-
bility to capture (Cooke et al. 2007; Redpath et al. 2010;
Lennox et al. 2017), leading to the evolution of those charac-
teristics as a result of selective harvest (Uusi-Heikkila et al.
2008; Diaz Pauli and Sih 2017); however, the results of stud-
ies have been inconsistent. While boldness has been found to
be linked to angling vulnerability in common carp Cyprinus
carpio (Klefoth et al. 2013, 2017) and higher metabolic rates
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have been found in largemouth bass Micropterus salmoides
selected for high vulnerability to angling (Cooke et al. 2007;
Redpath et al. 2010), boldness has not been found to be a
driver of capture vulnerability in Eurasian perch Perca
fluviatilis (Vainikka et al. 2016) and has been negatively
linked to angling vulnerability in bluegill Lepomis
macrochirus (Wilson et al. 2011). Furthermore, an artificial
selection experiment on zebrafish Danio rerio found that even
after simulated size-selective harvest, metabolic rate remained
unchanged (Uusi-Heikkila et al. 2015).

While boldness and metabolic rate have been extensively
studied in the context of angling vulnerability (Cooke et al.
2007; Klefoth et al. 2013, 2017; Hessenauer et al. 2015), the
influence of social behavior on vulnerability is only now being
examined. In one example, research on blacktip reef sharks
Carcharhinus melanopterus found that social networks of
sharks were robust to fisheries capture (Mourier et al. 2017),
while research using artificially selected lines of zebrafish
found that the line of fish subjected to negative size selection
(fish over a certain size were safe from angling) experienced a
drop in mean sociability as defined by a propensity to shoal
with other individuals on the other side of a clear divider
(Sbragaglia et al. 2019). Perhaps the most direct study of so-
ciability and its link to angling vulnerability was a study of
bluegill by Louison et al. (2018a). In this study, sociability
was defined once again as the propensity of an individual to
attempt to shoal with a group of conspecifics on the other side
of a clear divider, while aggression was assessed in paired
dyadic trials. This study found that more social bluegill were
more likely to be captured, at least with the angling method
used (stationary, artificial bait). However, social behavior in
this study was examined in an individual context, where the
social behavior of individuals was not impacted by a group of
individuals around them. As bluegill are a socially gregarious
species that tends to associate in large groups (McCartt et al.
1997), an assessment of social behavior (including willing-
ness to associate with conspecifics as well as aggression) in
a group setting will likely be a more robust and ecologically
relevant definition of this behavior and its subsequent link to
angling vulnerability. Indeed, prior work has shown that indi-
vidual fish will show different levels of behavior (i.e., altered
exploratory tendency or boldness) when tested alone com-
pared to when tested in a group (Jolles et al. 2017) and that
the actual composition of behavioral types within a group can
have a major impact on behavior (Magnhagen 2012).

In addition to social behavior, little work has been done
examining whether performance-based metrics, such as swim-
ming performance, may be linked to angling vulnerability.
Indeed, the potential for angling to selectively capture individ-
uals based on their swimming performance has never been
assessed (though selection based on swimming activity has,
see Binder et al. 2012; Koeck et al. 2018), even though
fisheries-induced evolutionary changes in swimming
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performance could have major impacts on population fitness
(Beecham et al. 2007; Mee et al. 2011). With regard to angling
vulnerability, swimming performance could be linked through
multiple mechanisms. First, individuals with greater swim-
ming performance could be better able to chase down actively
retrieved/trolled lures. Even in the case of a stationary lure or
bait (such as is often used for small gamefish such as bluegill)
when fish densities are high and competition for the opportu-
nity to feed on the bait is present (Stoner and Ottmar 2004;
Ward et al. 2006), individuals with greater performance may
be the first to be captured as they are quickest to reach the lure.
Second, swimming performance may be a proxy for metabolic
rate (Reidy et al. 2000), a characteristic that has been shown to
be under angling selection in some previous work (Redpath
et al. 2010; Hessenauer et al. 2015). In the specific case of
bluegill, while previous work did not show a difference in
standard metabolic rate or aerobic scope between captured
and uncaptured fish, a relationship was found whereby fish
with a shorter recovery time following exhaustive exercise
were among the first fish to be captured (Louison et al.
2018b). As recovery time following exercise has been linked
with quick response performance in fish (Killen et al. 2015),
which in turn could be linked to the speed at which a fish
responds to a lure or bait (either to strike or to dart away and
avoid), this therefore leaves open the possibility that swim-
ming performance could be linked with angling vulnerability
in this species, even though no links have been found between
other measures of metabolic phenotype and vulnerability
previously.

To define links between angling vulnerability, swim-
ming performance, and social behavior, we conducted a
study in bluegill. This species was chosen because it is
among the most popular targets for recreational anglers in
North America (Gaeta et al. 2013) is a relatively social
species that tends to congregate in groups (McCartt et al.
1997), its relatively small size lends itself well to labora-
tory studies of behavior and physiology, and our previous
work on this species (Louison et al. 2018a) allows us to
make meaningful comparisons between how behavior in a
group setting might impact angling vulnerability, as com-
pared to behavior in an individual setting as was done in
that study. To evaluate these behavioral traits in bluegill,
groups of focal individuals were loaded together into a
behavioral arena, and their sociability and aggression were
subsequently evaluated within the framework of social net-
work analysis (Krause et al. 2003; Croft et al. 2005; Wilson
et al. 2014). Fish were also assessed for individual swim-
ming performance in a Brett-style swim tunnel (Brett
1964) before being angled in a naturalistic pond setting.
We predicted that social behavior (specifically, higher so-
ciability) in a group setting would be positively linked to
angling vulnerability, that fish with higher swimming per-
formance would prove to be more vulnerable to angling,

and that social behavior would in turn be positively linked
to swimming performance.

Methods
Study animals and holding

On 30 March 2017, 365 adult bluegill were captured via hoop
netting from Spring Lake, IL, USA, by personnel from Jake
Wolf Fish Hatchery in Topeka, IL, USA. Spring Lake is a
small (822 ha) lake containing numerous predatory fish spe-
cies, including largemouth bass Micropterus salmoides and
muskellunge Esox masquinogy. While recreational angling is
allowed on Spring Lake, we were informed by hatchery per-
sonnel that the bluegill were sampled from a macrophyte-
covered area of the lake where angling seldom occurs and that
no angling to their knowledge had taken place in the calendar
year in that location prior to sampling. Prior research has
shown that fish tend to lose learned lure or bait avoidance if
angling pressure ceases over a period of a few months or even
less (Wegener et al. 2018; Koeck et al. 2019), meaning that it
is unlikely that the bluegill used for this study were influenced
by prior bait experience even if they had experienced lures in
prior years. Following collection, the bluegill were then held
in hatchery raceways for 1 week before subsequently being
delivered to the Illinois Natural History Survey’s Aquatic
Research Facility in Champaign, IL, USA, on 5 April 2017.
The facility consists of a wet laboratory, outdoor fish-holding
tanks, and a series of 24 earthen bottom ponds ranging in total
area from 0.04 to 0.12 ha. Of the 365 bluegill originally de-
livered, the 164 largest adults (total length range = 14.3-19.3
cm, mean total length + standard error of the mean, SEM =
16.6 £ 0.1 cm; body mass range 57.5-152.6 g, mean body
mass = SEM =93.3 & 1.7 g) were selected for use in this study,
with the remaining 201 smaller bluegill stocked into an on-site
pond for use in a separate study. Upon selection, adult bluegill
were implanted with a 0.8-cm Passive Integrated Transponder
tag (PIT, Biomark®, Boise, ID) for individual identification
and stocked into one of ten circular 1135 L plastic, holding
tanks at a density of 15-17 bluegill per tank. Each holding
tank was part of a flow-through system that continuously drew
freshwater from an adjacent pond at a rate of ~8 full water
exchanges per day, and water passively drained back to the
pond. Every day during holding, fish were fed frozen blood-
worms (Chironomidae) acquired from a local pet store, ra-
tioned to provide ~5% of the average fish’s body mass per
day.

Social behavior assay

Assessment of social behavior took place approximately 4
weeks after bluegill arrived at the facility, starting 1
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May 2017 and continuing through 21 May 2017. A total of
120 fish were assessed for social behavior. This assessment
took place in one of five 565 L rectangular polyethylene stock
tanks (hereafter “arenas,” 181 cm long % 65 cm wide) filled
with pond water to a depth of 25 cm. Water temperatures in the
arenas were maintained near 18 °C for the duration of the
experiment, with dissolved oxygen saturation maintained
above 90% using a Pentair Sweetwater' ™ air compressor con-
nected via tubing to an immersed air stone. A total of four sets
of behavioral assays were conducted, with five groups of six
fish (hereafter referred to as “shoals™) assayed within each set.

On the day before the first set of behavioral assessments, 30
fish were collected from the outdoor holding tanks and tagged
for on-camera identification with two circular plastic buttons
(1.4 cm diameter, 0.1 cm thickness) in one of six colors (black,
green, red, orange, yellow, or white), attached to dorsal spines
using 22 gauge art wire in a fashion similar to Wilson et al.
(2014). The buttons allowed for the differentiation of individ-
uals during subsequent behavioral scoring, and pilot trials
conducted prior to experimentation demonstrated that the tags
had minimal impact on swimming behavior. While we were
cognizant of the fact that the tag color could potentially impact
our findings (Catalano et al. 2001), subsequent analysis
showed no difference between tag colors in the net number
of aggressive acts (acts given minus acts received, ANOVA,
Fs 114 = 223, p = 0.055; see definition of aggressive acts
below). Following tagging, fish were loaded into behavioral
arenas at a density of six fish per arena, with each fish within a
shoal having different colored buttons. Fish within each shoal
were taken from separate holding tanks to prevent fish inter-
actions from being impacted by familiarity (Keller et al. 2017,
Trapp and Bell 2017). In addition, bluegill within each shoal
were size matched such that the largest fish in each shoal was
no more than 1 cm greater in total length than the smallest fish
(approximately 7% difference in size, depending on the mean
size of fish in the shoal); previous research on the congeneric
pumpkinseed Lepomis gibbosus demonstrated that differences
in size of this degree are unlikely to impact the direction of
aggressive interactions among fish (Beacham 1988). After
tagging, bluegill were allowed to acclimate overnight in the
arena before the first social behavior observation took place
the following morning (Jacoby et al. 2014).

Evaluation of social behavior consisted of once-daily ob-
servations over the course of three consecutive days conduct-
ed between 8:30 and 11:30 a.m., beginning the day after fish
were loaded into the arenas. Immediately prior to the outset of
observations, two GoPro™ Hero 3 cameras were mounted
over the arenas, and the air stone in the tank was removed to
prevent bubbles from shielding fish from the view of the cam-
eras. When videos were later scored for behavior, the first
30 min was discarded as an acclimation period, with behaviors
scored during the following 30 min. A 30-min trial period has
been shown previously to be of sufficient duration to quantify
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social behavior (Morrell et al. 2008; Dyer et al. 2009). At the
conclusion of the 30-min observation period on the first and
second day, cameras were removed, the air stone was re-
placed, and fish were fed with bloodworms corresponding to
~ 5% body weight per fish. Following the third day of obser-
vations, bluegill were quickly netted from the arena, had their
dorsal fin tags carefully removed, and were placed into one of
two 1135 L indoor holding tanks featuring identical water
conditions to the behavioral arenas prior to assessment of
swimming performance (see below), at a density of 15 fish
per tank. This was done to facilitate swimming performance
assessment in even blocks over 2 days. If we had left the fish
in their original tanks, there would have been an overnight
period for the second set of 15 fish where they were kept at
a different density than the overnight period for the first set of
fish (i.e., if we had assessed fish directly from their social
tanks, given that there were six fish in five tanks, there was
no way to avoid leaving at least one tank with fewer than six
fish overnight). This entire process was repeated for three
additional sets, until a total of 20 shoals (120 bluegill) were
assayed for social behavior.

Scoring and extraction of individual social network
metrics

Scoring of behavioral trials took place after the conclusion of
all aspects of the experiment and was performed by the lead
author to ensure consistency. To minimize observer bias, the
scorer (lead author MJL) was blinded to each fish’s swimming
performance or their angling outcome during scoring. Scoring
consisted of the construction of both associative and aggres-
sion interaction matrices to quantify social behavior in each
shoal, following previously established methods (Canon
Jones et al. 2011), and allowed us to quantify the behavior
of individual fish along an axis of sociability—aggression. To
compile association data, the location of each fish within the
behavioral arena was noted at 1-min intervals within the 30-
min observation, for a total of 30 observation points. If the end
of the snout of one fish was within one body length of another
fish, the two fish were considered to be interacting with each
other (Keller etal. 2017). The standard of one body length was
determined a priori based on observations from a series of
pilot trials, where roughly one body length was a radius where
fish either engaged in aggression or continued to remain in
proximity until disturbed by other fish. In the event of an
interaction pattern featuring more than two fish (i.e., fish A
associating with fish B, which was associating with fish C), all
individuals were considered to be associating with each other
for the purpose of scoring (Croft et al. 2011; Williams et al.
2017). A total of 90 observations were scored over the 3 days
of'trials for each shoal. Because raw values for social behavior
(number of interactions, normalized by the number of interac-
tions across all fish on that day of observation) proved to be
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repeatable across the 3 days of testing (intraclass correlation
coefficient based on one-way ANOVA = 0.41, 95% confi-
dence interval = 0.30-0.52), we pooled the data from all in-
teractions across all three observation days in constructing the
final associative matrix (Biittner et al. 2015).

For the construction of aggression matrices to define
dominant and submissive fish within each shoal, each
aggressive act (bites, charges, chases) observed through-
out the entire 30-min observation period (not only at
observation points) that forced the recipient fish to dis-
place itself by at least one body length was tallied and
the initiator and recipient of each act was recorded
(Canon Jones et al. 2011). Following scoring of the 3
days of trials aggression matrices, including the compiled
number of aggressive acts from each fish toward each of
the other five fish, were constructed for each shoal. The
data was pooled across all 3 days because, once again,
the normalized number of aggressive acts initiated (ICC
= 0.35, 95% confidence interval = 0.23-0.46) and the
normalized number of acts received (ICC = 0.40, 95%
confidence interval = 0.29-0.51) proved to be sufficient-
ly repeatable.

Analysis of all associative and aggression matrices was
conducted using UClInet software, version 6.646 (Borgatti
et al. 2002). An associative matrix for each shoal was weight-
ed by the number of observation points in which each pair of
individuals was found to be associating (Silk et al. 2015).
These matrices were used to determine each fish’s “weighted
degree” within a shoal, a measure of the overall sociability of
each fish (Sih et al. 2009; Cation Jones et al. 2011). For this
metric, fish with a higher weighted degree had more total
associations with a larger number of shoal mates and were
considered to be more social individuals, relative to individ-
uals with a lower weighted degree. Aggression matrices, on
the other hand, were directional, taking into account the initi-
ator and recipient of each aggressive act. These matrices were
used to compute “indegree centrality” and “outdegree
centrality” for each fish. Briefly, outdegree centrality is a mea-
sure of aggression, whereby individuals with high outdegree
centrality directed a large number of aggressive attacks toward
shoalmates. Inversely, high values of indegree centrality indi-
cate being frequently attacked by shoalmates (Cafion Jones
et al. 2010). Because measures of social behavior for each
individual are not independent and are impacted by the social
behavior of the surrounding individuals in that shoal (Croft
et al. 2011; Magnhagen 2012), we divided weighted degree,
indegree centrality, and outdegree centrality by the average
values for each shoal, in order to control for shoal effects on
behavior. Following conclusion of the trials and extraction of
social network metrics, we found no effect of the amount of
set on weighted degree (ANOVA, df'=3, 103, F=0.03,p =
0.99), indegree centrality (ANOVA, df=3,103, F=0.10,p =
0.95), or outdegree centrality (ANOVA, df' =3, 103, F = 0.64,

p = 0.59), indicating that the amount of time a fish was held
prior to being assayed had no effect on behavior.

Assessment of swimming performance

Swimming performance of bluegill was conducted in the 2
days following the conclusion of the social behavior assay,
using a Brett-style swim tunnel (Brett 1964; Reidy et al.
2000; Tierney 2011). In this apparatus, fish were placed in a
rectangular chamber within an acrylic racetrack, and current
was subsequently forced through the chamber via a propeller
attached to an electric motor. Swimming performance was
then assessed by adjusting the current and determining the
velocity at which the fish was no longer able to continue
swimming (Brett 1964). Food was withheld from fish for 2
days prior to the swim performance test to ensure that perfor-
mance differences between fish were not impacted by differ-
ential energetic demands induced by digestion (Pang et al.
2010; Rouleau et al. 2010). The chamber within the swim
tunnel where fish were placed for assessment was 45 cm long,
with a cross-sectional area of 209 cm®. Water temperature in
the swim tunnel was maintained between 17 and 18 °C using a
TK-500 Heater-Chiller (Teco®, Ravenna, Italy), and oxygen
saturation was kept near 100% with an air compressor and air
stone.

Swimming performance, defined as the fish’s critical
swimming speed, U,, was evaluated for 15 fish each day,
such that all evaluations for all 30 fish in each set were com-
pleted over 2 days. For each trial, a single fish was quickly
netted from its holding tank, identified via PIT tag, measured
for total length, and placed within the chamber of the swim
tunnel where it was initially forced to swim at a speed equal to
1 body length per second for 5 min to acclimate (Plaut 2001),
after which time water velocity within the tunnel was in-
creased by 0.5 body lengths per second every 5 min (hereafter,
referred to as steps) until the fish reached the failure threshold
and could no longer sustain swimming (Castro-Santos 2011).
Each bluegill was considered to have reached the failure
threshold when it was pushed by the current to the back of
the chamber and its caudal fin was in contact with the rear
grate of the chamber for a period of 4 s (Prenosil et al. 2016).
When failure was reached before the end of a 5-min step, U,
was calculated according to the following equation (Brett
1964):

Ueie = uy + (tl/tZ X Mz)

where u, is the highest speed (in cm s') that a fish could
sustain for the full 5-min step, u, is the speed at which failure
was reached, # is the time swam within the step where failure
was reached, and #, is the total time of each step (5 min). While
the length of time for each step before increasing the speed in
the tunnel is shorter than in some prior studies of salmonids
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(Gregory and Wood 1998; Reidy et al. 2000), we argue that a
shorter step time was more ecologically relevant given the fact
that bluegill do not usually occupy areas such as fast-flowing
streams, or engage in long-distance swimming or migration
that require long-term endurance (Jones et al. 2007). Upon
failure, each bluegill was removed from the swim tunnel,
weighed, and temporarily placed in a separate holding tank
before being stocked into the 0.04-ha angling pond (see be-
low). A total of 119 fish were stocked into the angling pond,
with one fish dying in its holding tank prior to swim perfor-
mance assessment.

Angling trials

Angling trials were conducted in a single 0.04-ha angling
pond and consisted of a series of nine angling sessions con-
ducted over 2 weeks. The angling pond featured natural mac-
rophyte cover and macroinvertebrate forage items and was
also stocked with juvenile mosquitofish Gambusia spp. to
serve as additional forage. By including a combination of
forage items in the angling pond, we presumed that all bluegill
were able to forage effectively. Angling was conducted daily
from 6 June to 10 June, and again from 12 June to 15
June 2017. Each angling day included a single session that
was conducted either in the morning (8:00 a.m.), midday
(12:00 p.m.), or evening (4:00 p.m.) as determined by random
selection. Each session was standardized to 45 total casts that,
depending on the number of fish caught in the session, took
between 45 min and 1 h to complete. All angling sessions
were carried out by the lead author, who systematically moved
around the entire perimeter of the pond during each session
and casted in a way to ensure that all areas of the pond were
targeted. The use of only a single angler, as opposed to mul-
tiple anglers, was done to avoid potential confounding effects
of'angler skill and approach on which fish were captured. Gear
consisted of a light-action spinning rod spooled with 1.8 kg
test Berkely Trilene™ monofilament fishing line, a setup
commonly used by bluegill anglers. The bait used was a sim-
ple size 8 Gamakatsu® J-hook baited with a live waxworm
Galleria spp. suspended in the water 1-1.5 m below the sur-
face with a stationary slip bobber. Strikes were detected by
watching the slip bobber on the surface and setting the hook
when the bobber was pulled beneath the surface by the fish, a
common practice for capturing bluegill. If no strike was de-
tected within 1 min of casting the bait into the water, the bait
was retrieved and subsequently casted into another location in
the pond. Upon capture, each fish was quickly dehooked,
identified using a hand-held PIT reader, and immediately re-
leased back into the pond to be potentially recaptured.
Handling time for each captured fish was under 1 min, with
no fish showing signs of bleeding or other disturbance upon
release. The angling pond was drained approximately 1 month
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after the conclusion of angling trials on 17 July, and 107 blue-
gill were recovered.

Statistical analysis

While normalized social network metrics were calculat-
ed for all 120 fish, analyses relevant to vulnerability to
angling were performed only on the 107 fish recovered
from the angling pond. To reduce the social network
data to functional components and eliminate issues of
multicollinearity (Scheiner and Gurevitch 2001;
Graham 2003), principal components analysis (PCA),
based on the correlation matrix, was performed on the
three measures of social behavior (weighted degree,
indegree centrality, outdegree centrality), following eval-
uation of the suitability of the data for factor analysis
(Hair 2010) (Kaiser—Meyer—Olkin test of sampling ade-
quacy = 0.573, Bartlett’s test of sphericity, p < 0.001).
Varimax-rotated components with eigenvalues greater
than 1 were retained based on the maximum likelihood
solution (Kaiser 1960). Pearson correlations were per-
formed to determine if U or fish length was associ-
ated with extracted social metrics.

In order to test whether the overall catchability
changed across all fish over the nine angling sessions,
we ran a zero-truncated negative binomial regression that
included session number as the explanatory variable and
the number of captured bluegill in each session as the
dependent variable. In order to assess whether social com-
ponents, fish length, and/or swimming performance im-
pacted vulnerability to angling in bluegill, we ran a pair
of Cox proportional hazard models. In the first, we in-
cluded these three factors as fixed covariates, with the
session in which a fish was captured as the “mortality
event.” For the second, we were interested in if any of
these factors would cause a fish that had been already
captured to be more likely to be captured again. For this
model, we only included fish that had been captured at
least once, included the same three covariates as in the
first model, and set the session in which a fish was cap-
tured for the second time as the “mortality event.” In each
model, we initially included all possible two-way interac-
tions between covariates; however they were all removed
after none of them proved to be significant.

All statistical analysis were performed using R
Version 3.6.0, utilizing the packages ‘VGAM’ (Yee
2010), ‘Hmisc’ (Harrell et al. 2019), MASS (Venables
and Ripley 2002), ‘survival’ (Therneau 2000), and
‘AER’ (Kleiber and Zeileis 2008). Thresholds for statis-
tical significance in all cases were set at a < 0.05, and
all data are reported as means + standard error of the
mean where appropriate.
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Results

Individual bluegill showed tremendous variation in their be-
havior during the social behavior assay. For the number of
aggressive acts initiated, fish ranged from 0 to 285 attacks,
while ranging in the number of acts received from 0 to 315
over the 3 days of observation (Table 1). Individual bluegill
also varied in their propensity to associate with other individ-
uals, with a range between 4 and 94% with regard to the
percentage of observation points where a fish was within
one body length of at least one other fish (Table 1).

Following principal components analysis on the three so-
cial network metrics, only a single component (hereafter, the
“social score”) was extracted. The social score was positively
loaded for indegree centrality and weighted degree, negatively
loaded for outdegree centrality, and accounted for 68.4% of
the total behavioral data variance (Table 2). Individuals with
high outdegree centrality had low indegree centrality and low
weighted degree, indicating that more aggressive individuals
received fewer attacks and spent less time associating with
other individuals.

Among the 107 bluegill recovered from the angling pond,
U,.ir ranged from 33.8 to 79.3 cm s !, with a median of
57.9 cm's ! (Table 1). Neither social score ( = —0.086, df=
105, p = 0.37) nor fish length (» = — 0.084, df = 105, p = 0.38)
was related to U, suggesting that swimming performance is
not a driver of social rank in bluegill (Fig. 1). Bluegill total
length and social score were also not correlated with each
other (r = 0.025, df = 105, p = 0.79), which was expected
given that all social data were normalized to be relative to
each individual’s shoalmates, and members of each shoal were
of similar length.

Nine angling sessions resulted in a total of 90 capture
events. In 25 additional cases, a strike was detected, but the
fish was not successfully landed, resulting in an angler effi-
ciency (78.2% of strikes were converted into captures) similar
to previously published work examining links between behav-
ior and angling vulnerability in fish (Louison et al. 2017).
Twenty-six bluegill were captured during session 1 (Fig. 2)
and capture rate declined with each subsequent session (z = —

Table 1 Median, range, and interquartile ranges for social behavior,
aggression, critical swimming speed (U,;,), and total length for all 120
bluegill Lepomis macrochirus initially included in the study. Aggressive
acts given and received represent the sum over the 3 days of the social

3.56, p < 0.001). Of the 107 bluegill recovered following
angling, 28 fish were not captured, 68 fish were captured once,
and 11 fish were captured twice. The first recapture of a fish
occurred during session 3, and no more than 1 recapture oc-
curred in any subsequent session except for session 7, when 7
out of the 14 captures were recaptures of previously captured
fish.

Total length was significantly associated with vulnerability
to angling (Table 3), with length significantly increasing the
probability of being captured both initially (Fig. 3b) and a
second time (Fig. 4b). While the effect of length was strong,
it was based within a relatively narrow range, as the difference
in length between captured and uncaptured fish was small
(captured fish were approximately 0.5 cm longer on average
than uncaptured fish). U, was also a significant driver of
initial capture (Table 3), with higher U, associated with
greater risk (Fig. 3a). U, however, was not a significant
driver of whether a fish was then captured a second time
(Table 3). Social score, while not a significant determiner of
whether a fish was captured initially, was a significant deter-
miner of whether a captured fish was subsequently captured a
second time (Table 3; Fig. 4a).

Discussion

In the present study, individual sociability/aggression impact-
ed the vulnerability of bluegill to angling. More specifically,
bluegill with higher sociability and lower aggressiveness were
more vulnerable to recapture after being caught before. This
finding is a significant addition to our knowledge of the
drivers of angling vulnerability, as to our knowledge, the only
published study (besides earlier work on bluegill in our
laboratory, Louison et al. 2018a) to quantify the impacts of
sociability on vulnerability to capture in fish found that social
network position did not predict angling vulnerability in
blacktip sharks Carcharhinus melanopterus (Mourier et al.
2017). With regard to aggression, the present results show that
less aggressive and more social bluegill are more vulnerable to
angling (at least, as defined by being vulnerable to recapture),

behavior assay, while proportion of time with another fish represents the
proportion of observation points where a fish was within one body length
of at least one other conspecific. For U, and length, N =119 as one fish
died before swimming performance and length could be recorded

Metric Median Range Interquartile range
Length (cm) 17.6 14.9-19.4 17.3-18.1

No. of aggressive acts given 6.5 0-285 0.25-54.25

No. of aggressive acts received 25.5 0-315 15.5-69.75
Proportion of time with another fish 0.53 0.04-0.94 0.32-0.75

Ugic (cm s 57.9 24.5-79.4 47.3-62.5

@ Springer
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Table 2 Factor loadings derived from principal components analysis
(PCA) on the three social network metrics extracted from sociability trials
in bluegill. Only a single component was extracted that included signif-
icant loadings for all three metrics; this component is hereafter referred to

as the “social score”

Factor PCI1 loading
Indegree centrality 0917
Outdegree centrality —0.806
Weighted degree 0.749
Eigenvalue 2.052

% variance explained 68.4%

a result that runs contrary to previous work in other fish spe-
cies (e.g., largemouth bass, Micropterus salmoides) where re-
sults have shown that aggressive and (presumably) bold phe-
notypes are the most vulnerable (Sutter et al. 2012; Arlinghaus
et al. 2017b; Twardek et al. 2017). This could be due to the
bait type we used in this study compared to the studies of other
species. These previous studies relied largely on lures that
were towed through the water, necessitating a fast and
“aggressive” response to strike. In the case of the present
study with a stationary lure, an aggressive response was likely
not necessary to strike, and as such, higher aggression did not
increase angling vulnerability. Rather than being based on an
aggressive response, the mechanism driving the relationship
between angling vulnerability and sociability may be related
to the fact that social individuals are more likely to congregate
in large groups within their environment, which likely impacts
their interaction with angling lures (Jacoby et al. 2014; Ost
et al. 2015). While forming groups increases foraging success
for individuals within the group (Pitcher et al. 1982), it also
increases competition for food among group members (Kent
et al. 2006; Ward et al. 2006) requiring individuals to make

25
. =-3.56, p < 0.001

- N
[ o

Number of Captures

1 2 3 4 5 6 7 8 9
Angling Session

Fig. 2 Number of bluegill captured across the 9 experimental angling
sessions. Total captures for each session include captures of fish for the
first time, as well as recaptures (1 recapture in sessions 3, 4, 5, and 9; 7
recaptures in session 7). The number of fish captured declined
significantly over the course of the sessions, as determined by a zero-
truncated negative binomial regression

faster decisions regarding whether to feed on an available prey
item (Stoner and Ottmar 2004). This process may extend to
fishing lures as well, causing group-living individuals to be
quicker to strike baited hooks and lures. Indeed, increases in
fish density within small ponds have been shown to cause
greater than expected increases in catch rates for angled fish,
suggesting that each individual fish becomes more vulnerable
as density increases, possibly as a result of this competition
(Raat 1991; Hérkonen et al. 2014). As a result, highly social
bluegill that reside in larger groups may be less discerning
when evaluating fishing lures as a potential prey item in a
highly competitive social context, leading to greater

Fig. 1 Relationship between a R b R
swimming performance (U, in .
cm sfl) and a fish length and b 194 o ¢ 27
social score in bluegill. . . . ® . ..
Swimming performance was not . . . . ¢ . .
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LE * .. » .... * ¢ '1 ¢ * .: * i * A *
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Table 3 Output from Cox proportional hazard models assessing the
impact of social score, swimming performance, and total length on
vulnerability to angling in bluegill. In the first model, the initial capture
of a bluegill is treated as the mortality event, with all available bluegill
included (N = 107). In the second model, only fish that had already been
captured once were included (N = 79), with the mortality event being
when a fish was captured for a second time. In total, 28 bluegill were
not captured at all, 68 bluegill were captured once, and 11 bluegill were
captured twice

vulnerability. Furthermore, because fish are aware of the for-
aging activity of fellow group members (Pitcher et al. 1982),
any bait that lands near any of the members in a group is likely
to elicit a response from nearby group members, effectively
increasing the “strike radius™ for a fish in a group relative to a
solitary fish.

Bluegill size was a predictor of angling vulnerability, with
larger individuals being more likely to be captured as well as

Hazard ratio S.E. z p recaptured. It should be noted that, while the difference in total
For initial capture length between captured and uncaptured bluegill was rather
Social score 1.09 011 0.83 0.40 small (c;plnérgd fish avzr;ge(:ﬁf;TZ cm an{i upcaptured ﬁsl;
U (cm s°1) 155 0.20 212 0.03 iwerag.e g d (im, a~1h~. o di lcirepce), se e;tlvi captu;e 0
Total length (cm) 150 0.13 307 0.002 arger individuals within a small size range has been shown
For second capture previously (Klefoth et al. 2017). Several prior studies in fish
) have additionally documented intraspecific size-selective har-
Social score 2.23 0.35 2.23 0.02 . . .
o vest in freshwater systems (Vainikka et al. 2016; Arlinghaus
Usi (cms™ 241 0.61 1.43 0.15 N i
Total length (em) 297 0.38 13 0.03 et al. 2017a). Furthermore, intrinsic growth rate (independent
oraT Tens (em i i i i of absolute fish size at capture) has also been linked with
Significant factors are given in italics increased capture vulnerability previously (Biro and Post
Fig. 3 Survival plots derived a
from a Cox proportional hazard o
model that tested whether social *g_ 1001 ————,
score, swimming performance, 8 1
and/or fish length impacted < S .
whether a bluegill (V = 107) was = 0754 Tttty o
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Fig. 4 Survival plots derived a
from a Cox proportional hazard
model that tested whether social
score, swimming performance,
and/or fish length impacted
whether a bluegill that had al-
ready been captured (V = 79) was
captured a second time, and how
many sessions took place before
that event occurred. The plots are
broken down based on a social
score and b total length (in cm).
Lines with different symbology
represent fish that were either
above (dotted) or below (dashed)
the median value for the given
metric

-
o

o
©

o
o

©
3

o
o

o
[

Probability of Avoiding Second Capture

Social Score Class =

0.91

Probability of Avoiding Second Capture

10{ === ===

T T T

3 4 5 6 7 8 9
Angling Session

Below Median Social Score = = Above Median Social Score

Length Class =

2008; Saura et al. 2010). As such, greater vulnerability of
larger bluegill in the present study may be related to growth
rate, where faster growers have higher feeding rates (Stamps
2007) and, as a result, are more likely to prey upon a baited
hook. Because the bluegill in the present study were not aged,
however, and were raised in a natural environment where they
were not separated by spawning cohort, this possibility cannot
be proven as larger fish could have simply been older, and not
necessarily faster growers per se. Alternatively, selective cap-
ture of larger bluegill in the current study could be a product of
gape size, where larger individuals with increased gape size

@ Springer
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are better able ingest lures, facilitating capture, while smaller
fish may be more likely to “nibble” the bait rather than
ingesting it completely (Alos et al. 2014). Indeed, previous
studies have shown the traits that make fish more likely to
encounter and decide to strike a lure or bait are not sufficient
to explain individual angling vulnerability, as the ability to
ingest the gear is critical as well (Lennox et al. 2017; Monk
and Arlinghaus 2017). Given the fact that total length ranges
ofuncaptured fish overlapped with those of captured fish (i.e.,
there did not appear to be a cutoff where all fish below a
certain total length were not captured), this appears unlikely
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to be the only explanation for the present results. Finally,
because larger fish within centrarchid groups tend to assume
dominance (Beacham 1988; Dugatkin and Ohlsen 1990), it is
possible that larger bluegill were simply able to dominate
areas of foraging space and force smaller fish to more periph-
eral habitats and, in turn, were more likely to encounter baited
hooks. This behavioral explanation also seems unlikely
though, given the fact that more aggressive individuals were
clearly not more vulnerable to capture (whether initial capture
or recapture), and also that efforts were made to cast lures to
all areas of the pond to eliminate habitat bias in capture.
Within this experimental construct, it was found that larger
bluegill were more vulnerable to angling, albeit within a rela-
tively narrow size range.

Swimming performance, as measured by an individual’s crit-
ical swimming speed, was significantly and positively associated
with the likelihood of initial capture. Swimming performance is a
highly repeatable physiological trait in fish, albeit one that can be
impacted greatly by conditions, such as food availability or tem-
perature (Gregory and Wood 1998; Reidy et al. 2000; Pang et al.
2016). While swimming performance was related to initial an-
gling vulnerability, it was not related to any aspect of social
behavior, a different finding than what has been shown previous-
ly (Killen et al. 2017). This lack of a relationship likely reflects
the biology of bluegill, as while bluegill form large aggregations
around available resources, they do not typically form highly
structured schools that travel for long distances (McCartt et al.
1997), which would necessitate social structuring based on indi-
vidual performance (Killen et al. 2017). For angled bluegill, the
mechanism driving the relationship between swimming perfor-
mance and angling vulnerability is unclear; however, we specu-
late that, as all the fish are initially looking to feed upon the baited
hook, it could simply be that better swimmers are quicker to
reach it and are thus more vulnerable. While prior work has
examined the relationship between swimming performance and
feeding rate (independent of angling), the results have been
somewhat inconsistent. In one study of common carp Cyprinus
carpio, fish with higher U, also had higher feeding rates and, in
turn, growth rates; however, this relationship disappeared when
fish were assessed at low temperatures (Pang et al. 2016).
Conversely, a study of rainbow trout Oncorhynchus mykiss
found that higher U, was associated with lower rates of food
consumption when fed satiation rations (Gregory and Wood
1999). Regardless of the mechanism at play here, another aspect
of these findings is that while Ul significantly predicted initial
capture, its influence on vulnerability changed as angling ses-
sions progressed, as it did not significantly impact whether a fish
was recaptured. This could reflect a change in how fish, espe-
cially fish that had already been captured, view the baited hook
following experience. Indeed, numerous studies have indicated
that the vulnerability of fish is at its highest point when they are
totally naive to capture (Young and Hayes 2004; Askey et al.
2006; Arlinghaus et al. 2017a; Louison et al. 2017; Koeck et al.

2019) and that fish that have been previously hooked become
much more wary of anglers (Lennox et al. 2016). Under initial
conditions, the baited hook may be seen as an easy food source
and the “free for all” conditions may predispose large, fast swim-
ming bluegill to higher vulnerability. However, after learning
takes place, bluegill become more wary of lures, and at that point,
it is not swimming performance but rather social behavior that
makes a fish more likely to be captured a second time.
Collectively, these results demonstrate that the definition of an-
gling vulnerability may not be simple, and that under different
circumstances, different characteristics are likely to be drivers of
vulnerability in an individual. In turn, this means that the traits
that drive selective capture are not likely to be static, and will
likely change depending on the degree of exposure angled pop-
ulations receive to angling pressure.

The results of the present study highlight a key factor that may
impact the selectivity of angling based on behavior and physiol-
ogy, which is the bait used and its overall effectiveness. While
several previous studies have documented selection where traits
such as higher boldness and exploratory behavior, aggression,
activity, and metabolic rate (i.e., traits associated with a “fast”
life history, see Biro and Stamps 2008; Binder et al. 2016) render
a fish more vulnerable (Redpath et al. 2010; Hérkonen et al.
2014; Villegas-Rios et al. 2014; Hessenauer et al. 2015), it should
be noted that these studies targeted fish with a variety of artificial
lures or baits that were retrieved rather than being allowed to
remain motionless, as was the case in this study. Indeed, previous
work has shown that more stationary baits tend to catch shyer
individuals compared to actively retrieved lures in multiple fish
species (Wilson et al. 2015). Not only did the present study
involve a stationary lure, but it also involved live bait as opposed
to an artificial bait or plastic lure, and prior work has also shown
that the type of bait on a hook may impact what behaviors are
selectively captured, even with everything else about the angling
approach (line, retrieval speed, etc.) kept equal (Harkonen et al.
2016). The use of natural bait in the present study also likely
impacted how vulnerability to angling was defined relative to
our previous work with bluegill (Louison et al. 2018a). In that
study, a similar gear was used (stationary hook below a float);
however, artificial bait was utilized instead of natural bait, which
has been shown previously to capture a smaller proportion of
available fish (Harkonen et al. 2016) and did again here (40 of
the 151 available fish were captured at least once in Louison et al.
2018a, compared to 79 of the 107 bluegill in the present study).
This may well account for the somewhat discordant results of the
present study with regard to sociability (as sociability did not
predict whether a fish was captured at least once). In the previous
work, the most vulnerable fish had only been captured once (and
were more social) with the median fish left uncaptured, and only
one fish was captured twice. In the present study, the median fish
had been captured once with only a minority of fish left
uncaptured, while 11 fish were captured twice and could be
considered the most vulnerable to angling. In this context, the
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finding that sociability led to a greater likelihood of recapture
actually is similar to the results of Louison et al. (2018a), namely
that more social bluegill are likely to be the most vulnerable to
angling in a given population, regardless of how effective the
angling was. The collective results of these studies, as well as
earlier studies of angling vulnerability, therefore emphasize the
fact that the results of selection experiments are often not gener-
alizable and may return disparate results depending on bait type,
species, and the overall effectiveness of the gear.

The results of this study are applicable to the overall study of
how fished populations respond evolutionarily to selective cap-
ture. While evolutionary changes to life history traits (growth,
reproductive age, etc.) have been well documented in fish
(Kuparinen and Merild 2007; Kuparinen and Hutchings 2012;
Heino et al. 2015), recent work has shown that behavioral and
physiological traits may evolve in freshwater sportfish popula-
tions as well due to selective harvest (Uusi-Heikkila et al. 2008;
Philipp et al. 2009; Leclerc et al. 2017). With regard to this
question, however, it is difficult to make definite predictions
about the evolutionary impact of selective angling harvest on
bluegill based on the present findings. While larger size was a
driver of capture regardless of how it was defined, swimming
performance only predicted the initial capture, while social be-
havior only predicted recapture. On one hand, bluegill are a
sought-after sportfish for anglers looking to harvest fish to con-
sume (Reed and Parsons 1999; Paukert et al. 2002), meaning that
only the traits leading to initial capture could be under selection if
captured fish are likely to be harvested. However, research shows
that a substantial proportion of angled bluegill are eventually
released (over 90%, Gaeta et al. 2013). This means that the traits
that render a fish more likely to be captured multiple times may
be important from a selection perspective, as fish that are caught
once and subsequently avoid capture are, in all likelihood, less
likely to suffer angling-related mortality than fish that continue to
strike baits even after previously being captured, as each new
capture event freshly exposes a fish to the risk of either harvest
or post-release mortality due to capture and handling stress
(Cooke and Suski 2005; Gingerich et al. 2007). Furthermore,
the present results are complex in that, if evolution favoring less
social and more aggressive phenotypes is occurring in bluegill,
they run somewhat in opposition to a predicted “timidity
syndrome” in fish stocks subjected to intense angling pressure,
as bolder and more aggressive individuals are removed
(Arlinghaus et al. 2017b). This finding is consistent with previ-
ous results in bluegill (Louison et al. 2018a), further demonstrat-
ing the importance of individual sociability in driving angling
vulnerability for this species. In addition, Wilson et al. (2011)
found that angled bluegill were shyer than those seined from
the same location, indicating that bold and aggressive individuals
are not more vulnerable to angling, at least for this species. The
lack of selection favoring these “slow life history™ traits in this
species likely reflects not only the behavioral traits of bluegill, but
also the angling methods used to target them. Going forward, the
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only way to know with certainty the evolutionary impact of
angling on this species will be to monitor the behavior and phys-
iology of bluegill in the wild and use this information to deter-
mine if the outcome of these selection experiments is actually
predictive of evolution in exploited populations.
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