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• Best management practices (BMPs) for ag-
ricultural conservation have been pro-
moted in the US

• BMPs target at future environmental resil-
ience but still lacking rigorous biological
evaluation

• We projected agricultural conservation to
benefit non-point source pollution con-
trol, not future freshwater biodiversity

• Future agricultural conservation should
more restore natural patterns of tempera-
ture and flow for freshwater biodiversity

• Future agricultural conservation on biodi-
versity should also consider keeping local
stakeholders engaged
A B S T R A C T
A R T I C L E I N F O
Editor: Sergi Sabater

Keywords:
Functional diversity
Species distribution modeling
Soil & Water Assessment Tool
Best management practices
Freshwater fish
Random forest
Global climate change and agricultural disturbance often drive freshwater biodiversity changes at the regional level,
particularly in the Midwestern US. Agricultural conservation practices have been implemented to reduce sediment
and nutrient loading (e.g., crop rotation, cover crops, reduced tillage, and modified fertilizer application) for long-
term economic sustainability and environmental resilience. However, the effectiveness of these efforts on freshwater
biodiversity is not conclusive. In this study, we used the Kaskaskia River Watershed, Illinois as an example to evaluate
how agricultural conservation practices affects both taxonomic and functional diversity under climate changes. The
measures of trait-based functional diversity provide mechanistic explanations of biological changes. In specific, we
model and predict 1) species richness (SR), 2) functional dispersion (FDis), and 3) functional evenness (FEve). FDis
and FEve were based on ecology (life history, habitat preference, and trophic level) and physiology (thermal prefer-
ence, swimming preference, etc.). The best random-forest regression models showed that flow, temperature, nitrate,
and the watershed area were among the top predictors of the three biodiversity measures. We then used the models
to predict the changes of SR and FDis under RCP8.5 climate change scenarios. SR and FDis were predicted to decrease
in most sites, up to 20 % and 4% by 2099, respectively. When agricultural conservation practices were considered to-
gether with climate changes, the decreasing trends of SR and FDis remained, suggesting climate change outweighed
potential agriculture conservation efforts. Thus, climate-change effects on temperature and flow regimes need to be
incorporated into the design of agricultural practices for freshwater biodiversity conservation.
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1. Introduction

Global climate change is driving ecosystem reorganization (Antão et al.,
2020; Comte et al., 2021). Freshwater ecosystems are among the most
threatened in the world as they are relatively isolated, fragmented, and of-
tentimes heavily exploited (Woodward et al., 2010). Freshwater fish
have the highest extinction rates among vertebrates (Grooten and
Almond, 2018). In rivers, thermal and flow regimes are top factors al-
tered by climate change (Jones, 2011; Webb, 1996) that are driving eco-
system changes, including displacement of sensitive fishes with more
tolerant species (Comte et al., 2021). In global temperate regions, the
US Mississippi River Basin is a hotspot of freshwater fish diversity,
supporting recreational and commercial fisheries and various ecosys-
tem services (Allan et al., 1997; Pracheil et al., 2013). Climate change
projections on freshwater fish in the Mississippi River basin can be ex-
emplary for other river basins globally.

Regional land-use can interact with climate change to strongly affect
freshwater biodiversity. This interaction can exert additive, synergistic, or
antagonistic impacts on riverine ecosystems (Radinger et al., 2016). Agri-
culture is the greatest driver among all land-use changes, encompassing
over 40 % world's land surface, including the majority of the Mississippi
River basin (Raven and Wagner, 2021). In agricultural landscapes, the im-
pacts of climate change on temperature and flow can be intensified due to
1) increased solar radiation following the reduction of riparian cover
(Caissie, 2006), 2) altered flow patterns from subsurface drain tiles and sur-
face ditches (Blann et al., 2009), and 3) decreased groundwater recharge
after water extraction for irrigation (Loheide and Gorelick, 2006). More-
over, nutrient input from fertilizers and toxicants from pesticides can fur-
ther stress the fragile riverine communities (Op de Beeck et al., 2017;
Wang et al., 2020).

To improve water quality in agricultural watersheds in a changing cli-
mate, best management practices (BMPs) have been promoted in the US,
whichmainly aim to reduce non-point source pollution, including sediment
and nutrient loading, to ensure long-term economic sustainability and envi-
ronmental resilience (Bekele et al., 2012). Within agricultural landscapes,
excessive nutrient input through runoff, siltation from soil loss, and more
extreme temperature changes from loss of the riparian zone all could nega-
tively impact stream fish communities locally, thus BMPs potentially could
help with both water quality and freshwater biodiversity (Dala-Corte et al.,
2016; Mantyka-Pringle et al., 2016; Larentis et al., 2022). However, the ef-
fectiveness of such conservation efforts on local aquatic biodiversity has yet
to be rigorously evaluated and confirmed, especially in a changing climate
(Allan, 2004; South et al., 2019). In theory, agricultural conservation using
BMPs, by the name itself, should create a balance between agricultural pro-
duction and ecosystem equilibrium. In the Midwestern US, Fraker et al.
(2020) projected the effects of scheduled BMPs such as erosion control
and nutrient management in the Western Basin of Lake Erie. With BMPs
simulated during the years 2020–2065, they found large-bodied, coolwater
species would suffer more, while small-bodied warmwater species would
benefit more under climate change, despite the fact that BMPs would effec-
tively improve overall water quality. Together, results from climate model-
ing projections of Fraker et al. (2020) suggest negative impacts of BMPs on
freshwater communities when coolwater species play an important role in
local communities. However, what if BMPs are applied in a watershed
that mostly consists of warmwater species, such as the Mississippi River
Basin? Will BMPs be able to benefit both water quality and freshwater bio-
diversity?

To evaluate the effectiveness of conservation efforts on riverine ecosys-
tems under climate change, taxonomic diversity indices based on presence
and abundance data have been important tools (Oberdorff et al., 2011). Un-
fortunately, these biodiversity measures cannot identify the mechanism
(s) responsible for changes to the community behind the numbers, such
as the replacement of sensitive species by tolerant ones, or the invasion of
nuisance species (Murdoch et al., 2020). In the last two decades, trait-
based community ecology has gained greater attention whenmodeling bio-
diversity responses under climate change. Because it can incorporate both
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taxonomic diversity, and the physiological, morphological, or life-history
characteristics of each species (Mcgill et al., 2006; Poff, 1997; Zakharova
et al., 2019). Such an approach offers the potential to revealmechanistic ex-
planations for community changes, which can be generalized across differ-
ent ecosystems (Frimpong and Angermeier, 2010; Olden et al., 2006).
Functional diversity indices, developed from the quantification of func-
tional traits (Petchey and Gaston, 2006), can elucidate species' roles in eco-
system functioning, thus offering better explanatory power of how climate
and land-use drive ecosystem changes (Cadotte et al., 2011).When it comes
to conservation and restoration, functional diversity could be a better
choice for decision-making processes (Malaterre et al., 2019).

To assess how climate and agriculture can affect riverine biodiversity,
we used the Kaskaskia River Watershed in Illinois, within the Mississippi
River Basin in the Midwestern US as an example, due to its over 50 years'
standardized fish sampling program, extensive monitoring on water qual-
ity, heavily altered riverine environment by agriculture, and existing spe-
cies abundance and occupancy modeling (Cao et al., 2016; Acero Triana
et al., 2021) for the foundation of this trait-level and community-level
modeling. As such, we sought to quantify 1) the current spatial distribution
of biodiversity (i.e., functional and taxonomic diversity) for fish communi-
ties, 2) the key environmental drivers on fish biodiversity, 3) the potential
changes in fish biodiversity under future climate, and most importantly,
4) whether agricultural conservation practices could help with fish biodi-
versity conservation under climate change.

2. Materials and methods

2.1. Study area

The Kaskaskia River Watershed is a major tributary of the Mississippi
River, located in central and southwestern Illinois, US (Fig. 1). It drains
14,880 km2, 10.2% of Illinois (USACE, 2017). Prior to European settlement
in the 1700s, the watershed was mainly covered by prairies and forests.
Today, the land cover has been altered to predominately croplands (63
%), mostly corn and soybeans. Forest and grasslands have decreased to
16 % and 9 %, respectively, while urban or impervious surface has in-
creased to 9 % (USDA, 2016). Besides land cover, many meandering
streams and rivers have also been channelized and dredged, with drain
tiles installed in most farmland (Blann et al., 2009). Two large reservoirs,
Lake Shelbyville and Carlyle Lake, were constructed on the main channel
during 1960–1970s (Shasteen et al., 2013). Changes in land cover and
flow regime accelerated the fragmentation and degradation of aquatic eco-
systems in the Kaskaskia River Watershed (Acero Triana et al., 2021;
Larimore and Bayley, 1996).

2.2. Data source

2.2.1. Fish sampling data
Fish data were combined from two datasets: 1) the Intensive Basin Sur-

vey monitored by Illinois Department of Natural Resource (IDNR) and
Illinois Environmental Protection Agency (IEPA); 2) Monitoring and As-
sessment of Aquatic Life Program from Illinois Natural History Survey
(INHS). Sampling sites were determined by fisheries biologists, based
on geology, biodiversity, pollution, and historical sampling records
(Cao et al., 2016). Fish sampling followed standard IDNR protocols
(IDNR, 2010) using an electric seine or backpack electrofishing, as
well as boat electrofishing, during May–October from 1952 to 2015
(Cao et al., 2016). To avoid sampling inconsistency and represent the
latest fish community composition across the Kaskaskia River Water-
shed, we only included the latest year records per sampling site after
1995. Due to the productive and speciose nature of Midwestern streams
and rivers (Smith et al., 2010), we further excluded fish samples with
<20 individuals per site and <5 species per site to avoid any bias from
improper field operations (Cao et al., 2015). These criteria resulted in
91 fish sites in 1st-4th order streams and rivers distributed evenly across
the entire watershed.



Fig. 1. Land cover of the Kaskaskia River Watershed.
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2.2.2. Environmental data
We grouped environmental data into two categories: 1) variables af-

fected by climate and agricultural practices, including those describing
water quality, water temperature, and flow, referred to as climate-related
variables hereafter, and 2) non-climate variables that were not expected
to change over the period from 1995 to 2100. Water quality here was in-
cluded as a climate-related variable because flow regime or precipitation
changes from climate change can strongly affect mobilization of nutrients
from fields to stream channels (Michalak, 2016).

For climate-related data, we utilized a hydrologicmodel previously gen-
erated for the entire Kaskaskia RiverWatershed (Acero Triana et al., 2021).
This hydrologic model was based on the Soil and Water Assessment Tool
(SWAT), using topography, soil, land cover, meteorology, and agricultural
conservation practices as inputs. The climate-related outputs of the model
included streamflow, suspended sediment, nitrate, and dissolved oxygen.
Besides these, water temperature was estimated by regression between
air and water temperature records at two gauges in the watershed where
water temperature measurements are available. All five variables were cal-
culated with mean, minimum, maximum, and standard deviation annually
3

based on daily values from 1990 to 2015 for the baseline model (cur-
rent) and from 2019 to 2100 for the projection. The spatial resolution
of these variables was at the subbasin level (n= 175), where a subbasin
was defined as the drainage area of one stream or river segment. Future
environmental projections were built upon the baseline model, using fu-
ture climate conditions and scenario-based agricultural conservation
practices.

Future climate projections were based on 32 different temperature and
precipitation projections from the Atmosphere-Ocean Global Climate
Models (AOGCM) under the highest representative concentration pathway
(RCP8.5). RCP8.5 could upper-bound the worst scenarios of future climate
for the Kaskaskia River Watershed, by simulating the highest greenhouse
gas emissions without mitigation policies (Riahi et al., 2011). As part of
these projections, minimum, mean, and maximum annual air temperature
were projected to increase by 0.92, 0.61, and 0.79 °C per decade, with a
total increase of 8.82, 5.62, and 7.56 °C by 2100, respectively. Mean annual
precipitation was projected to increase slightly, with minimum, mean, and
maximum precipitation amounts close to 750, 1000, and 1500 mm, by
2100, respectively.
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The scenario-based agricultural conservation practices considered in
the model were, 1) crop rotation, 2) cover crops, 3) reduced tillage, and
4) reduced or split fertilizer application. These four practices were priori-
tized by landowners in the Kaskaskia River Watershed, and believed to
help improve the sustainability and resilience of the watershed, based
on a previous survey (Shipley et al., 2020) and state conservation re-
ports (IDNR, 2017; IEPA, 2019). Twelve agricultural conservation sce-
narios were generated that incorporated these four conservation
practices, with different magnitudes (Acero Triana et al., 2021). These
agricultural conservation practices were predicted to be very effective
for nutrient and sediment input reduction into streams, with local ni-
trate predicted to decrease up to 40 % and 30 % during 2020–2029
and 2030–2039, respectively, and suspended sediment predicted to
decrease up to 40 % and 40 % during the same period. For future projec-
tions, we first averaged 32 climate scenarios for changes in air temper-
ature and precipitation, then applied the 12 different agricultural
conservation scenarios above climate change.

For non-climate environmental data, we referred to previous species
distribution models across streams in Illinois, US (Cao et al., 2016). Based
on the rankings of how non-climate environmental variables influenced
fish species abundance, we selected 15 variables: soil permeability, land
cover (% forest cover and % agricultural cover), channel gradient, wa-
tershed slope (total-watershed and local-watershed slope), bedrock
depth (<15 m and <30 m below), dam (having upstream dam, distance
to upstream dam, having downstream dam, and distance to downstream
dam), stream order, sinuosity, and watershed area. These 15 variables
were selected among >300 candidate environmental variables compiled
from the Great Lakes Regional Aquatic Gap Analysis Project (Brenden
et al., 2008; Cao et al., 2016; McKenna et al., 2013; Steen et al.,
2008). The resolution was at the reach level, where the reach was de-
fined as a stream section between the confluences of an upstream tribu-
tary and a downstream tributary.

2.3. Data analysis

2.3.1. Functional traits
Compared to taxonomy-based models, trait-based models have the po-

tential to provide a mechanistic understanding about fish distribution and
community changes (Frimpong and Angermeier, 2010). Among all fish
traits, ecological traits involving life history, trophic level, and habitat pref-
erence are well studied, widely available, and have been proven to effec-
tively predict species distributions under environmental change (Blanck
et al., 2007; Mao et al., 2021; Olden et al., 2006; Parker et al., 2018). Be-
sides these, physiological tolerance is directly related to habitat selection
for fish, making physiological traits ideal to model future species distribu-
tion when evolutionary potentials of a species is excluded (Giacomini
et al., 2013; Lange et al., 2016). We thus used both ecological and physio-
logical trait groups (Table 1) for each species.
Table 1
Functional traits of fish used to calculate functional diversity indices in the Kaskaskia R
tabase (http://www.fishtraits.info/), BioNet (https://programs.iowadnr.gov/bionet/Fish
chive/web/html/app_c-1.html), and previous study (Whittier et al., 2007).

Category Trait Type

Ecology Habitat preference Categorical
Trophic level Numeric
Lifespan Numeric
Mature age Numeric
Fecundity Numeric
Parental care Factor

Physiology Water quality tolerance Factor with levels
Thermal tolerance Factor with levels
Swimming factor Numeric
Flow preference Factor with levels
Maximum total length Numeric
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2.3.2. Functional diversity indices
Out of many functional diversity indices, we focused on two: functional

dispersion (FDis) and functional evenness (FEve) as 1) they represent differ-
ent aspects of functional diversity; 2) they are not sensitive to species rich-
ness, and 3) they can be used to test unlimited numbers of traits (Laliberté
and Legendre, 2010; Mao et al., 2021; Parker et al., 2018). We did not test
functional richness (FRic) because 1) it cannot account for the relative
abundance of species (Laliberté and Legendre, 2010; Pla et al., 2011) and
2) it is always strongly correlated with species richness, thus unable to
offer much extra information compared to traditional species richness
(SR). We then used traditional species richness as an alternative to our
two functional diversity indices.

FDis measures the variability of species traits in a local community by
quantifying the spread of traits from the centroid in high-dimensional
space for all species. It accounts for species abundance by shifting the cen-
troid towards more abundant species. FDis has its lower boundary at zero
and no upper boundary. The fewer traits that abundant species share, the
higher the FDis value will be (Laliberté and Legendre, 2010; Pla et al.,
2011).

FEve measures the regularity of species traits. It is calculated by mini-
mum spanning tree method, which connects all trait points in a high-
dimensional space, using the lowest total tree branch length. FEve has a
boundary between zero and one. The fewer common traits that species
share, or the less evenly distributed species abundance is, the higher FEve
value will be (Gaëlle and Jean-Claude, 2018).

To evaluate how different trait types were associated with all environ-
mental variables described earlier, we calculated FDis and FEve based on
1) ecological traits (FDis_E and FEve_E), 2) physiologcal traits (FDis_P,
FEve_P), and 3) both ecological and physiological traits (FDis, FEve) for
all 91 sampling sites. These indices were weighted with abundance,
which was square-root transformed to reduce sampling bias, especially
from the weight of abundant, but small species (e.g., American gizzard
shad Dorosoma cepedianum). We also calculated SR at each site for compar-
isons. All functional indices were generated using the package “FD” (Cutler
et al., 2007; Laliberté et al., 2014) in R 4.0.2 (R Core Team, 2020). The
cailliez correctionwas implemented for the species-by-species distance ma-
trix because traits involve both quantitative and qualitative variables
(Laliberté et al., 2014). As a result, seven diversity indices (FDis_E,
FEve_E, FDis_P, FEve_P, FDis, FEve, and SR) were calculated and modeled.

2.3.3. Random forest modeling
We used random forest (RF) regression (Breiman, 2001) to assess how

climate-related and non-climate environmental variables influence biodi-
versity. We selected RF to model current and future biodiversity changes
because 1) it does not require assumptions of data distributions and vari-
able independences; 2) it automatically accounts for interactions among en-
vironmental variables; and 3) it allowsmore predictors than observations in
models (Cutler et al., 2007). To define the current relationship between
iver Watershed, extracted from FishBase (http://www.fishbase.org/), Fishtraits Da-
/Species/List), Environment Protection Agency (https://archive.epa.gov/water/ar-

Description and (or) units

1) small substrate, 2) large substrate, 3) vegetation or debris, and 4) pelagic
2–4.5 Based on food items
Maximum age (years)
Mean age at maturation (years)
No. of eggs or offspring per breeding season (log transformation)
With or without parental care
1) tolerant, 2) intermediate, and 3) intolerant
Summer maximum temperature: 1) cool: 18–25 °C and 2) warm ≥25 °C
Ratio of minimum depth of the caudal peduncle to the maximum caudal fin depth
1) slow, 2) moderate, and 3) fast
Maximum total body length (mm)

https://archive.epa.gov/water/archive/web/html/app_c-1.html
https://archive.epa.gov/water/archive/web/html/app_c-1.html
https://archive.epa.gov/water/archive/web/html/app_c-1.html
https://archive.epa.gov/water/archive/web/html/app_c-1.html
https://archive.epa.gov/water/archive/web/html/app_c-1.html
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biodiversity measures and environmental data for FDis, FEve, and SR at
each sampling site, we used 1) five years' averaged climate-related vari-
ables and 2) five years' averaged climate-related variables together with ad-
ditional non-climate variables as predictors in RF after comparingmodel R2

from one year to up to five-years average. In all models, we also included
year as an extra variable to check for temporal influences as fish samples
were collected over 20 years. We trained all models with 500 trees to
stabilize estimates of variable importance, then excluded all variables
with negative contributions to the output. All RF models were built using
package “ranger” (Wright et al., 2020), with relative importance per vari-
able calculated using the “importance” function. The positive, negative,
or multimodal relationships between environmental variables and biodi-
versity indices were evaluated using “partial-dependence” in the package
“randomForest” (Liaw and Wiener, 2002). Based on model performance
measured from pseudo-R2 values, we selected the best fitting models for
FDis, FEve, and SR, respectively. We then used the best models to predict
future biodiversity changes every 10 years under climate change only or cli-
mate change with the 12 agriculture conservation scenarios described
above (Fig. 2).

2.3.4. Site-specific projection comparisons
To identify what climate-related environmental variables were

projected to have the largest difference between sites with highest and low-
est predicted biodiversity, we selected 10 highest and 10 lowest FDis/SR
sites projected in 2049 under different agricultural scenarios, then used t-
tests to compare climate-related environmental variables between high
and low sites.

3. Results

3.1. Spatial patterns of the biodiversity measures

RF models were generated for 86 fish species recorded at 91 sites using
environmental variables as independent variables and FDis, FEve, or SR as
dependent variables (Fig. 3), with all 7×2 combinations (columns× rows
in Table 2). Among FDis, FEve, and SR, FDis models had the best fits (R2=
Fig. 2. Conceptual modeling framework for the projection of stream fish biodiversity un
2100.
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0.26–0.44), followed by SR models (R2 = 0.25–0.29), with FEve models
having the lowest performance (R2 = 0.02–0.10) (Table. 2). Models had
better performance overall when considering both climate-related and
non-climate explanatory variables than climate-related variables only,
with R2 increasing by up to 0.12. For functional indices, when including
both ecological and physiological traits, models had better performance
than either ecological or physiological traits alone.

For all models with R2≥ 0.10, partial-dependence plots helped explain
how FDis, FEve, and SR can be driven by environmental variables (Table 3).
When only climate-related variables were used as predictors in models,
flow and temperature were dominant, including annual mean, min, max,
and standard deviation: FDis_E based on ecological traits was positively re-
lated to flow, which is responsible for up to 69 % of variance explained by
the model. FEve_E based on ecological traits was positively related to tem-
perature, responsible for up to 39 % of variance explained by the model,
while FDis_P based on physiological traits and SR were negatively related
to temperature, responsible for up to 54 % of the variance explained by
the model. When both climate-related and non-climate variables were in-
cluded in models, flow and temperature still showed high importance, up
to 34 % and 44 % of variance explained by the model, respectively. How-
ever, non-climate variables, including watershed area, bedrock depth, and
% agriculture land cover, also played an important role in these models.
Among non-climate variables, watershed area was ranked high, up to 52
% and 40 % of variance explained for FDis and FDis_E, respectively.

3.2. Climate and agricultural conservation projections

Based on contemporary conditions, we selected FDis and SR to predict
the influence of future climate and agricultural conservation practices on
biodiversity in the Kaskaskia RiverWatershed (Fig. 4, Tables S1–S2). With-
out agricultural conservation scenarios, when including both climate-
related and non-climate variables, SR was generally expected to decrease,
up to 6 % on average from 2019 to 2049. From 2049 to 2099, SR was ex-
pected to increase, from – 6 % back to – 4 % relative to 2019 levels. For
site-specific predictions, the largest decrease was shown to be – 20 % in
2049 compared to 2019. When climate-related variables were considered
der climate change (RCP8.5) and 12 different agricultural conservation scenarios by



Fig. 3. Functional dispersion (FDis) (a), functional evenness (FEve) (b), and species richness (SR) (c) at 91 sites over 1995–2015 in the Kaskaskia River Watershed, estimated
based on six ecological and five physiological traits of 86 species.
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alone, the trend of SR changes stayed the same, but average SR was pre-
dicted to be lower than SR in models with both climate-related and non-
climate variables. Compared to predictions of SR changes, FDis had similar
trends, with up to – 1.1 % from 2019 to 2049. After 2049, FDis showed a
gradual increase, eventually back to – 0.5 % in 2099 relative to 2019. The
site-specific predictions of FDis had up to – 4.0 % in 2049 compared to
2019, then a gradual increase, with – 1.6 % in 2099 compared to 2019 in
the best site. Similar to SR, when climate-related variables were considered
alone, the trends of FDis stayed the same but were predicted to be lower on
average.

All 12 agricultural conservation scenarios were not able to reverse the
moderately decreasing trends of SR and FDis (Fig. 5, Tables S1–S2). No ag-
ricultural conservation scenarios would enhance average SR over 1 %. Site-
specific predictions (Figs. S1–S2) showed larger site differences when im-
plementing agricultural conservation scenarios compared to no conserva-
tion, with the largest decrease in SR changing from – 20 % to – 22 % by
2049. Similar to SR, the overall decrease of FDis was not reversed with ag-
ricultural conservation scenarios, with the enhancement of overall FDis
<0.2 %. Despite no significant reverse in SR and FDis under agricultural
conservation scenarios.We did predict the positive influence of agricultural
conservation on reduction of minimum, mean, and maximum nitrate and
nitrate, no matter through reduction or split of nitrate use, crop rotation,
cover crop, or no-tillage (Tables S3–S8).

Regardless of application or absence of agricultural conservation sce-
narios, higher FDis sites could still have higher flow and nitrate (Fig. S3).
For SR, without agricultural conservation scenarios, higher SR sites could
have higher nitrate while dissolved oxygen could be lower. After
Table 2
R2 values in random forest models for functional dispersion and evenness based on
1) ecological traits (FDis_E and FEve_E), 2) physiological traits (FDis_P, FEve_P), and
3) both ecological and physiological traits (FDis, FEve). Species richness (SR) is also
calculated for comparisons.

Environmental variables Ecology Physiology Ecology &
Physiology

SR

FDis_E FEve_E FDis_P FEve_P FDis FEve

SWAT 0.26 0.10 0.37 0.02 0.32 0.10 0.25
SWAT & non-climate
environment

0.36 0.10 0.39 0.09 0.44 0.10 0.29

SWAT: Sol & Water Assessment Tool.
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agricultural conservation scenarios, the difference of nitrate or dissolved
oxygen between high and low SR sites reduced, partially replaced by flow
variables as the top-ranking differences. (Fig. S3).

4. Discussion

We examined environmental drivers of stream fish biodiversity mea-
sures (SR, FDis, and FEve) in the Kaskaskia River Watershed, Illinois. We
then extrapolated the potential changes in biodiversity in all sampling
sites across the watershed to 2099. Our model predicts moderate impacts
of climate changes on fish communities in the Kaskaskia River Watershed
within the Mississippi River Basin, a heavily altered yet speciose river sys-
tem. When global climate change and regional agricultural conservation
practices acted together, our model predict that agricultural conservation
practices, which mainly focus on reducing nutrient and sediment loss, did
little to help reverse moderate declines in fish biodiversity under climate
change.

4.1. Environmental drivers of functional diversity

High functional diversity implies efficient use of resource by the local
biological community, oftentimes associated with heterogeneous habitats
(Dı́az and Cabido, 2001). Compared to taxonomic diversity, such as species
richness, functional diversity helps us to infer the causation of community
changes due to environmental disturbances (Mcgill et al., 2006). Because
functional diversity is estimated based on species traits, whether selected
traits are highly relevant to local environmental conditions will determine
the performance of functional diversity in predicting environmental im-
pacts on the local community (Wood et al., 2015).

In this study, we showed that functional indices based on both ecologi-
cal and physiological traits were most strongly associated with the environ-
ment (i.e., higher R2 in RFmodels). FDis measures the variability of species
traits in a local community, however, physiological traits have been used
much less than ecological traits. The physiological traits used in this study
describe the tolerance of fishes to water quality, temperature, and flow,
and they are particularly relevant for assessing the joint effects of climate
changes and agricultural practices. FEve based on either ecological or phys-
iological traits or both showedweak correlationwith the environment (low
R2), in agreement with Parker et al. (2018). Thus, the FEve measure may
not be useful for detecting the effects of climate change and agriculture con-
servation scenarios on fish communities, although further investigation is
needed.



Table 3
Responses of biodiversitymeasures to the top-5 environmental predictors in random forest (RF)models. The order of numbers represents variable importance ranking in each
model (measured with “importance” function in “ranger”). The symbol in parenthesis denotes the relationship between the variable and the response (+ positive,− neg-
ative, ∼multimodal) inferred through partial-dependence plots (measured with “partialPlot” function in “randomForest”). See Table 2 for definitions of the abbreviations
of functional diversity and species richness. Climate-related variables include water temperature, flow, suspended sediment, nitrate, and dissolved oxygen. Mtry in Random
Forest represents the number of variables randomly sampled as candidates at each split.

Environmental variables Climate-related Climate-related & non-climate

Responses FDis FEve FDis_E FEve_E FDis_P SR FDis FEve FDis_E FEve_EW FDis_P SR

Temperature Mean 3 (+) 1 (+) 3 (−) 5 (−) 3 (+) 4 (+) 3 (~)
Min 4 (+) 5 (+) 5 (~) 5 (~)
Max 2 (+) 3 (+) 1 (−) 1 (−) 2 (+) 3 (+) 1 (−) 3 (−)
Std 4 (+) 2 (−) 3 (−) 2 (−)

Flow Mean 1 (+) 1 (+) 2 (+) 2 (+) 2 (+)
Min 5 (+) 1 (+) 5 (+) 2 (+) 4 (+) 1 (+) 4 (+)
Max 2 (+) 3 (+) 3 (+)
Std 3 (+) 2 (+) 4 (+) 3 (+)

Suspended sediment Mean
Min
Max 5 (−)
Std

Nitrate Mean
Min 4 (~) 5 (+) 5 (~) 4 (~)
Max 4 (−)
Std

Dissolved oxygen Mean
Min
Max
Std

Soil permeability 1 (−)
Land cover % Forest

% Agriculture 4 (−) 2 (−) 5 (+)
Channel gradient
Watershed slope Total watershed

Local watershed 4 (~)
Bedrock depth <15 m 5 (+)

<30 m 1 (−) 5 (+)
Dam Upstream

Distance to upstream
Downstream
Distance to downstream

Stream order
Sinuosity 5 (~)
Watershed area 1 (+) 1 (+) 2 (+)
mtry in RF 5 10 2 3 6 5 16 14 16 5 12 10
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Among all environmental factors, flow and temperature were the two
most important drivers of FDis and FEve. In FEve models, temperature fac-
tors contributed up to ~40 % among all independent variables and posi-
tively affected FEve. The Kaskaskia River Watershed already has high
summer temperatures, thus may not provide ideal habitats for coolwater
species. This was confirmed by the fact that only eight of the 86 fish species
sampled classified as coolwater fish (Buisson et al., 2008; Hansen et al.,
2017). Thus, warmer water in the Kaskaskia River Watershed under future
climate scenarios may not significantly change fish community composi-
tion, but, in fact, may increase productivity to better support local
warmwater fish species (Rathert et al., 1999; Wehrly et al., 2003), benefit-
ing FEve.Minimumflowwas also positively associatedwith FEve, likely be-
cause it influences both habitat size and connectivity (Jaeger et al., 2014).
In FDis models containing ecological traits, flow was the top predictor, ac-
counting for up to 70 % in relative importance among all variables, which
was positively affecting FDis. This is understandable as flow increases con-
nectivity between habitats (Falke and Fausch, 2010; Jaeger et al., 2014).
Also, more flow means more habitats, thus offering more niche space for
more species, especially larger predators (Angermeier and Schlosser,
1989; Petermann et al., 2015; Xenopoulos and Lodge, 2006).

When physiological traits were considered alone, temperature became
the top predictor, and was negatively associated with FDis. This trend
may have been driven by coolwater species, despite their rarity in the Kas-
kaskia River Watershed fish communities. Besides temperature and flow, a
medium level of nitrate was also positively associated with FDis, implying
appropriate level of primary production could contribute to functionally
7

diversified fish communities. Non-climate variables also explained a signif-
icant portion of FDis and FEve distributions. Watershed area accounted for
up to 52% of variable importance for FDis among all non-climate variables,
likely because larger watersheds yield more flow, thus providingmore hab-
itat space (Xenopoulos and Lodge, 2006). Dams were never a top predictor
in any FDis or FEvemodels, suggesting limited impacts onfish communities
in the Kaskaskia River Watershed. This is likely due to 1) a low percentage
of potamodromous fish species in the Midwestern US and 2) such limited
potamodromousfish species already distributed across thewhole Kaskaskia
River Watershed (Dean et al., 2022; Smith et al., 2010), making the impact
of damming invisible at the community level. SR models also showed sim-
ilar results with FDis, but with lower R2, suggesting that trait-based func-
tional dispersion could be more informative for predicting climate-change
impacts on aquatic communities.

4.2. Climate change, agricultural conservation, and future biodiversity

When climate change was considered alone, we found a moderate
downward trend of FDis and SR under RCP8.5 by 2099, with the most se-
vere decrease expected during 2029 to 2049; after 2049, declines in FDis
and SR were predicted to ease or stop. Under RCP8.5 global warming sce-
narios, we expect air temperature to increase 0.61 °C per decade in the Kas-
kaskia River Watershed, together with slight increases in precipitation
(Acero Triana et al., 2021). Severe climate change may minimally threaten
fish communities of the Kaskaskia River Watershed because only eight of
86 fish species currently present are coolwater fishes, and only 15 are



Fig. 4. Predicted changes of functional dispersion (FDis) (a) and species richness (SR) (b) in the Kaskaskia RiverWatershed under averaged RCP8.5 climate change scenarios,
using six ecological and five physiological traits of 86 species for calculation. Climate-related variables includes water temperature, flow, suspended sediment, nitrate, and
dissolved oxygen.
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classified as sensitive to poor water quality. This is different from many
other watersheds worldwide, such as in Europe (Buisson et al., 2013;
Markovic et al., 2014) and the Verde River Basin of North America
(Jaeger et al., 2014) where the majority of fish communities were threat-
ened by climate change. For the majority of fish species in Midwestern ag-
ricultural watersheds like the Kaskaskia, climate change in the 21st century
may benefit their fitness (Rountrey et al., 2014). However, caution should
bemade here as we could either overestimate or underestimate the impacts
from climate change. For potential overestimation, we here used the most
extreme scenario RCP8.5, it would always be better to model the same wa-
tershed undermore different RCP scenarios andmake comparisons. For po-
tential underestimation, we did not include heatwaves, drought, and
flooding simulations in the models, thus the impacts of climate change
could be underestimated. Also, we did not have lab-derived data or long-
term field monitoring information on how increased temperatures could
alter physiological function, like metabolism (e.g., standard metabolic
rate and aerobic scope) for warmwater species, thus altering their growth
and reproduction, and eventually their fitness and distributions (Rummer
et al., 2014; Stillman, 2019). Under elevated temperature, the oxygen de-
mand of fish tissue can increase exponentially until a critical temperature,
where oxygen demand formaintenance exceeds cardiorespiratory capacity,
causing a loss of performance (Pörtner, 2010). Studies on metabolism dur-
ing warming have gained attention, but mostly on cold- or coolwater spe-
cies, not warmwater ones (Lennox et al., 2018; Oligny-Hébert et al., 2015).

We cannot avoid the impacts of climate change locally, but we do have
the potential to reduce climate impacts through appropriate regional land-
use management (Lawrence et al., 2014; Oliver and Morecroft, 2014).
Through simulating 12 agricultural conservation scenarios targeted at the
economic sustainability and environmental resilience of the watershed
(Shipley et al., 2020), we expected positive responses in fish communities.
However, none of these agricultural conservation scenarios improved ei-
ther SR or FDis. This indicates that management for ecosystem services
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(i.e., minimizing nutrient and sediment input into rivers) will not have sig-
nificant co-benefits to fish communities of the Kaskaskia River Watershed
(Smith et al., 2015; Xiao et al., 2018). Our results generally agree with sim-
ilar projections in theWestern Lake Erie Basin in theMidwestern US, which
also predicted that agricultural conservation practices will benefit water
quality but not overall biodiversity (Fraker et al., 2020). This is understand-
able because the agricultural conservation practiceswe assessedwere prior-
itized to reduce nutrient and sediment input, while such reduction in the
Kaskaskia River Watershed may not benefit fish communities as high SR
or FDis sites could have higher nitrate levels instead of lower. Under climate
change, positive effects from nutrient and sediment control on nearby
stream fish communities (i.e., SR or FDis) could be trivial or even offset
by negative climate impacts. What really could improve SR or FDis is to im-
prove the variability of temperature or flow under climate change, which
were the strongest drivers in our models and largest differences between
high and low SR or FDis projected sites. We therefore would expect biodi-
versity increases when conservation practices focus on mitigating tempera-
ture and flow impacts, such as building wooded riparian zones or
recovering river sinuosity (Allen, 2005; Beechie et al., 2015; Bowler et al.,
2012). Such improvements in land-use near streams could be critical for
both taxonomic and functional biodiversity (Dala-Corte et al., 2016).
Also, such land-use changes could have co-benefits on nutrient and sedi-
ment reduction from an agricultural conservation perspective, with the ri-
parian zone functioning as the interface between aquatic community and
terrestrial agricultural production (Lind et al., 2019). However, the eco-
nomic benefits of such conservation efforts may not elicit the interests of
farmers. Only if we find a way to make conservation practices benefit
both biodiversity and agriculture production, and these economic benefits
can be quantified (Chan et al., 2011; Hermoso et al., 2018), wouldwe antic-
ipate long-term collaboration between farming and conservation.

Taxonomic or functional diversity may not be prioritized when land-
owners consider conservation actions in the Kaskaskia River Watershed



Fig. 5. Predicted changes of functional dispersion (FDis) (a) and species richness (SR) (b) under different agricultural conservation scenarios with climate change in the
Kaskaskia River Watershed. The baseline is model projection in 2019. 00 represents no agricultural conservation, 01 and 02 represent 10 % and 20 % reduction of nitrate
application in corn field, 03 and 04 represent the different splits of nitrate application. 05–07 represent different crop rotations in corn and soybean fields. 08 and 09
represent the use of winter wheat as cover crops in corn and soybean fields. 10–12 represent the reduced till or no-till in corn and soybean fields. Models use both
ecological and physiological traits of each species for FDis measurement, and both climate-related and non-climate variables for environmental information.
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(Shipley et al., 2020). Instead, the focus of landowner interestsmay involve
enhancing the abundance of sportfish species, such as walleye (Sander
vitreus), muskellunge (Esox masquinongy), and smallmouth bass
(Micropterus dolomieu) due to their importance in recreation or food. Be-
cause these species are also sensitive to temperature and nutrients, we
can motivate the conservation interests of landowners through conserv-
ing sport fishes as ‘umbrella species’, which could further benefit
broader fish communities (Roberge and Angelstam, 2004). Also, an-
other practical way to enhance native biodiversity when collaborating
with landowners is to first target at controlling nuisance or invasive spe-
cies, especially sliver carp (Hypophthalmichthys molitrix) and bighead
carp (Hypophthalmichthys nobilis) in the North America. Because such ef-
forts of controlling invasive species could help restore natural flow and
temperature regimes that promote the competitiveness of native species
indirectly (Lawrence et al., 2014; Rahel et al., 2008). Overall, it may be
difficult to stimulate public interests in conserving biodiversity alone,
but if we can combine it with other benefits, we could gain more support
from landowners for win-wins of ecosystem service actions for biodiver-
sity. Determining how to mitigate temperature and flow impacts on
“important” species is a realistic direction to begin designing such con-
servation plans.

4.3. Future conservation planning

In this study, we modeled the relationships between fish biodiversity
and a range of environmental variables, then predicted fish biodiversity
changes under climate change projections and agricultural conservation
scenarios. The basin-wide averages of both taxonomic and functional diver-
sity were predicted to decreasemoderately. However, the magnitude of the
decrease varied greatly across sites. We therefore recommend that future
9

efforts prioritize the monitoring of sites predicted to have the biggest biodi-
versity changes when designing basin-wide conservation practices. With
such prioritization, we can establish long-term monitoring programs on
how key drivers (e.g., flow, temperature, and nitrate) shape local fish com-
munities. Also, local riverine biodiversity relies on dispersal (Falke and
Fausch, 2010). Improving connectivity among sites (e.g., barrier removals)
while optimizing tradeoffs between conservation and ecosystem services
provision should also be a priority (Erős et al., 2018). What is more, with
moderate predicted deceases of biodiversity in watersheds, like the Kaskas-
kia in this study, conservation efforts of both governmental agencies and
NGO may shift their focus to coolwater or sensitive species, instead of
only the overall biodiversity.

During future conservations, we should better collaborate with local
residents when designing conservation practices (Allen, 2005; Stubbs,
2014). To achieve this, while targeting the restoration of biodiversity, we
recommend incorporating both key species enhancement and invasive spe-
cies control into planning. With such an approach, residents can better ap-
preciate the importance of freshwater diversity besides economic stability
under climate change (Ban et al., 2013).

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.162143.
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